高一数学公式(高一数学公式整理总结)
高一数学公式(高一数学公式整理总结)

高一数学公式总结

高一数学常见的公式有哪些,哪些是重点公式呢?不知道的小伙伴们看过来,下面由我为你精心准备了“高一数学公式总结”,持续关注本站将可以持续获取更多的资讯!

高一数学公式总结【一】

三角函数公式

1、两角和公式两角和公式

sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

高一所有数学公式_高一的数学公式总结

高一数学是高中学习生涯的开始,在高一时打好基础,这样在后面的数学学习中才会更容易下面是我给大家带来的高一的数学公式总结,希望对你有帮助。

高一的数学公式

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

高一数学公式整理总结

高一数学公式归纳有以下内容:

1、圆体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程(x-a)2+(y-b)2=r2【(ab)是圆心坐标】圆的一般方程x2+y2+dx+ey+f-0【d2+e2-4f>0】椭圆周长公式:1=2mb+4(a-b)

2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2mb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.椭圆面积公式:s=ab

3、椭圆面积定理:椭圆的面积等于圆周率(t)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。

高一数学公式必修一人教版

平方关系:

sin^2α+cos^2α=1

1+tan^2α=sec^2α

1+cot^2α=csc^2α

·积的关系:

sinα=tanα×cosα

cosα=cotα×sinα

tanα=sinα×secα

cotα=cosα×cscα

secα=tanα×cscα

cscα=secα×cotα

·倒数关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

直角三角形ABC中,

角A的正弦值就等于角A的对边比斜边,

余弦等于角A的邻边比斜边

正切等于对边比邻边,

·[1]三角函数恒等变形公式

·两角和与差的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·辅助角公式:

Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中

sint=B/(A²+B²)^(1/2)

cost=A/(A²+B²)^(1/2)

tant=B/A

Asinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)

tan(2α)=2tanα/[1-tan²(α)]

·三倍角公式:

sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(60-α)

cos(3α)=4cos³(α)-3cosα=4cosα·cos(60+α)cos(60-α)

tan(3α)=tan a · tan(π/3+a)· tan(π/3-a)

·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降幂公式

sin²(α)=(1-cos(2α))/2=versin(2α)/2

cos²(α)=(1+cos(2α))/2=covers(2α)/2

tan²(α)=(1-cos(2α))/(1+cos(2α))

·万能公式:

sinα=2tan(α/2)/[1+tan²(α/2)]

cosα=[1-tan²(α/2)]/[1+tan²(α/2)]

tanα=2tan(α/2)/[1-tan²(α/2)]

·积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos²α

1-cos2α=2sin²α

1+sinα=(sinα/2+cosα/2)²

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx

证明:

左边=2sinx(cosx+cos2x+...+cosnx)/2sinx

=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)

=[sin(n+1)x+sinnx-sinx]/2sinx=右边

等式得证

sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx

证明:

左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边

等式得证

诱导公式

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

正弦定理是指在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径)

余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA

角A的对边于斜边的比叫做角A的正弦,记作sinA,即sinA=角A的对边/斜边

斜边与邻边夹角a

sin=y/r

无论y>x或y≤x

无论a多大多小可以任意大小

正弦的最大值为1 最小值为-1

三角恒等式

对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC

证明:

已知(A+B)=(π-C)

所以tan(A+B)=tan(π-C)

则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ

向量计算

设a=(x,y),b=(x',y')。

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

AB-AC=CB. 即“共同起点,指向被减”

a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

4、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)·b=λ(a·b)=(a·λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积

定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。

定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a·b=x·x'+y·y'。

向量的数量积的运算率

a·b=b·a(交换率);

(a+b)·c=a·c+b·c(分配率);

向量的数量积的性质

a·a=|a|的平方。

a⊥b 〈=〉a·b=0。

|a·b|≤|a|·|b|。

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。

2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。

3、|a·b|≠|a|·|b|

4、由 |a|=|b| ,推不出 a=b或a=-b。

立体几何基本课题

包括:

- 面和线的重合

- 两面角和立体角

- 方块, 长方体, 平行六面体

- 四面体和其他棱锥

- 棱柱

- 八面体, 十二面体, 二十面体

- 圆锥,圆柱

- 球

- 其他二次曲面: 回转椭球, 椭球, 抛物面 ,双曲面

公理

立体几何中有4个公理

公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.

公理2 过不在一条直线上的三点,有且只有一个平面.

公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

公理4 平行于同一条直线的两条直线平行.

立方图形

立体几何公式

名称 符号 面积S 体积V

正方体 a——边长 S=6a^2 V=a^3

长方体 a——长 S=2(ab+ac+bc) V=abc

b——宽

c——高

棱柱 S——底面积 V=Sh

h——高

棱锥 S——底面积 V=Sh/3

h——高

棱台 S1和S2——上、下底面积 V=h〔S1+S2+√(S1^2)/2〕/3

h——高

拟柱体 S1——上底面积 V=h(S1+S2+4S0)/6

S2——下底面积

S0——中截面积

h——高

圆柱 r——底半径 C=2πr V=S底h=∏rh

h——高

C——底面周长

S底——底面积 S底=πR^2

S侧——侧面积 S侧=Ch

S表——表面积 S表=Ch+2S底

S底=πr^2

空心圆柱 R——外圆半径

r——内圆半径

h——高 V=πh(R^2-r^2)

直圆锥 r——底半径

h——高 V=πr^2h/3

圆台 r——上底半径

R——下底半径

h——高 V=πh(R^2+Rr+r^2)/3

球 r——半径

d——直径 V=4/3πr^3=πd^2/6

球缺 h——球缺高

r——球半径

a——球缺底半径 a^2=h(2r-h) V=πh(3a^2+h^2)/6 =πh2(3r-h)/3

球台 r1和r2——球台上、下底半径

h——高 V=πh[3(r12+r22)+h2]/6

圆环体 R——环体半径

D——环体直径

r——环体截面半径

d——环体截面直径 V=2π^2Rr^2 =π^2Dd^2/4

桶状体 D——桶腹直径

d——桶底直径

h——桶高 V=πh(2D^2+d2^)/12 (母线是圆弧形,圆心是桶的中心)

V=πh(2D^2+Dd+3d^2/4)/15 (母线是抛物线形)

平面解析几何包含一下几部分

一 直角坐标

1.1 有向线段

1.2 直线上的点的直角坐标

1.3 几个基本公式

1.4 平面上的点的直角坐标

1.5 射影的基本原理

1.6 几个基本公式

二 曲线与议程

2.1 曲线的直解坐标方程的定义

2.2 已各曲线,求它的方程

2.3 已知曲线的方程,描绘曲线

2.4 曲线的交点

三 直线

3.1 直线的倾斜角和斜率

3.2 直线的方程

Y=kx+b

3.3 直线到点的有向距离

3.4 二元一次不等式表示的平面区域

3.5 两条直线的相关位置

3.6 二元二方程表示两条直线的条件

3.7 三条直线的相关位置

3.8 直线系

四 圆

4.1 圆的定义

4.2 圆的方程

4.3 点和圆的相关位置

4.4 圆的切线

4.5 点关于圆的切点弦与极线

4.6 共轴圆系

4.7 平面上的反演变换

五 椭圆

5.1 椭圆的定义

5.2 用平面截直圆锥面可以得到椭圆

5.3 椭圆的标准方程

5.4 椭圆的基本性质及有关概念

5.5 点和椭圆的相关位置

5.6 椭圆的切线与法线

5.7 点关于椭圆的切点弦与极线

5.8 椭圆的面积

六 双曲线

6.1 双曲线的定义

6.2 用平面截直圆锥面可以得到双曲线

6.3 双曲线的标准方程

6.4 双曲线的基本性质及有关概念

6.5 等轴双曲线

6.6 共轭双曲线

6.7 点和双曲线的相关位置

6.8 双曲线的切线与法线

6.9 点关于双曲线的切点弦与极线

七 抛物线

7.1 抛物线的定义

7.2 用平面截直圆锥面可以得到抛物线

7.3 抛物线的标准方程

7.4 抛物线的基本性质及有关概念

7.5 点和抛物线的相关位置

7.6 抛物线的切线与法线

7.7 点关于抛物线的切点弦与极线

7.8 抛物线弓形的面积

八 坐标变换·二次曲线的一般理论

8.1 坐标变换的概念

8.2 坐标轴的平移

8.3 利用平移化简曲线方程

8.4 圆锥曲线的更一般的标准方程

8.5 坐标轴的旋转

8.6 坐标变换的一般公式

8.7 曲线的分类

8.8 二次曲线在直角坐标变换下的不变量

8.9 二元二次方程的曲线

8.10 二次曲线方程的化简

8.11 确定一条二次曲线的条件

8.12 二次曲线系

九 参数方程

十 极坐标

十一 斜角坐标 两角和公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB �

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA) �

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

[编辑本段]倍角公式

Sin2A=2SinA•CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=2tanA/1-tanA^2

[编辑本段]三倍角公式

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

[编辑本段]半角公式

[编辑本段]和差化积

sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]

tanA+tanB=sin(A+B)/cosAcosB

[编辑本段]积化和差

sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]

cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]

[编辑本段]诱导公式

sin(-a) = -sin(a)

cos(-a) = cos(a)

sin(π/2-a) = cos(a)

cos(π/2-a) = sin(a)

sin(π/2+a) = cos(a)

cos(π/2+a) = -sin(a)

sin(π-a) = sin(a)

cos(π-a) = -cos(a)

sin(π+a) = -sin(a)

cos(π+a) = -cos(a)

tanA= sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

[编辑本段]万能公式

[编辑本段]其它公式

[编辑本段]其他非重点三角函数

csc(a) = 1/sin(a)

sec(a) = 1/cos(a)

[编辑本段]双曲函数

sinh(a) = [e^a-e^(-a)]/2

cosh(a) = [e^a+e^(-a)]/2

tg h(a) = sin h(a)/cos h(a)

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)= sinα

cos(2kπ+α)= cosα

tan(2kπ+α)= tanα

cot(2kπ+α)= cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)= -sinα

cos(π+α)= -cosα

tan(π+α)= tanα

cot(π+α)= cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)= -sinα

cos(-α)= cosα

tan(-α)= -tanα

cot(-α)= -cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)= sinα

cos(π-α)= -cosα

tan(π-α)= -tanα

cot(π-α)= -cotα

公式五:

利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)= -sinα

cos(2π-α)= cosα

tan(2π-α)= -tanα

cot(2π-α)= -cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)= cosα

cos(π/2+α)= -sinα

tan(π/2+α)= -cotα

cot(π/2+α)= -tanα

sin(π/2-α)= cosα

cos(π/2-α)= sinα

tan(π/2-α)= cotα

cot(π/2-α)= tanα

sin(3π/2+α)= -cosα

cos(3π/2+α)= sinα

tan(3π/2+α)= -cotα

cot(3π/2+α)= -tanα

sin(3π/2-α)= -cosα

cos(3π/2-α)= -sinα

tan(3π/2-α)= cotα

cot(3π/2-α)= tanα

(以上k∈Z)

这个物理常用公式我费了半天的劲才输进来,希望对大家有用

A·sin(ωt+θ)+ B·sin(ωt+φ) =

√{(A^2 +B^2 +2ABcos(θ-φ)} • sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }

√表示根号,包括{……}中的内容

免费下载这份资料?立即下载

高一数学公式总结

高一数学常见的公式有哪些,哪些是重点公式呢?不知道的小伙伴们看过来,下面由我为你精心准备了“高一数学公式总结”,持续关注本站将可以持续获取更多的资讯!

高一数学公式总结【一】

三角函数公式

1、两角和公式两角和公式

sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

高一所有数学公式_高一的数学公式总结

高一数学是高中学习生涯的开始,在高一时打好基础,这样在后面的数学学习中才会更容易下面是我给大家带来的高一的数学公式总结,希望对你有帮助。

高一的数学公式

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

高一数学公式整理总结

高一数学公式归纳有以下内容:

1、圆体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程(x-a)2+(y-b)2=r2【(ab)是圆心坐标】圆的一般方程x2+y2+dx+ey+f-0【d2+e2-4f>0】椭圆周长公式:1=2mb+4(a-b)

2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2mb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.椭圆面积公式:s=ab

3、椭圆面积定理:椭圆的面积等于圆周率(t)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。以上椭圆周长、面积公式中虽然没有出现椭圆周率t,但这两个公式都是通过椭圆周率t推导演变而来。

高一数学公式必修一人教版

平方关系:

sin^2α+cos^2α=1

1+tan^2α=sec^2α

1+cot^2α=csc^2α

·积的关系:

sinα=tanα×cosα

cosα=cotα×sinα

tanα=sinα×secα

cotα=cosα×cscα

secα=tanα×cscα

cscα=secα×cotα

·倒数关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

直角三角形ABC中,

角A的正弦值就等于角A的对边比斜边,

余弦等于角A的邻边比斜边

正切等于对边比邻边,

·[1]三角函数恒等变形公式

·两角和与差的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

·三角和的三角函数:

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

·辅助角公式:

Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中

sint=B/(A²+B²)^(1/2)

cost=A/(A²+B²)^(1/2)

tant=B/A

Asinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B

·倍角公式:

sin(2α)=2sinα·cosα=2/(tanα+cotα)

cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)

tan(2α)=2tanα/[1-tan²(α)]

·三倍角公式:

sin(3α)=3sinα-4sin³(α)=4sinα·sin(60+α)sin(60-α)

cos(3α)=4cos³(α)-3cosα=4cosα·cos(60+α)cos(60-α)

tan(3α)=tan a · tan(π/3+a)· tan(π/3-a)

·半角公式:

sin(α/2)=±√((1-cosα)/2)

cos(α/2)=±√((1+cosα)/2)

tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα

·降幂公式

sin²(α)=(1-cos(2α))/2=versin(2α)/2

cos²(α)=(1+cos(2α))/2=covers(2α)/2

tan²(α)=(1-cos(2α))/(1+cos(2α))

·万能公式:

sinα=2tan(α/2)/[1+tan²(α/2)]

cosα=[1-tan²(α/2)]/[1+tan²(α/2)]

tanα=2tan(α/2)/[1-tan²(α/2)]

·积化和差公式:

sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]

·和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

·推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos²α

1-cos2α=2sin²α

1+sinα=(sinα/2+cosα/2)²

·其他:

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin²(α)+sin²(α-2π/3)+sin²(α+2π/3)=3/2

tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0

cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx

证明:

左边=2sinx(cosx+cos2x+...+cosnx)/2sinx

=[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差)

=[sin(n+1)x+sinnx-sinx]/2sinx=右边

等式得证

sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx

证明:

左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx)

=[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx)

=- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边

等式得证

诱导公式

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα

tan(3π/2+α)=-cotα

cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα

cos(3π/2-α)=-sinα

tan(3π/2-α)=cotα

cot(3π/2-α)=tanα

(以上k∈Z)

正弦定理是指在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径)

余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA

角A的对边于斜边的比叫做角A的正弦,记作sinA,即sinA=角A的对边/斜边

斜边与邻边夹角a

sin=y/r

无论y>x或y≤x

无论a多大多小可以任意大小

正弦的最大值为1 最小值为-1

三角恒等式

对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC

证明:

已知(A+B)=(π-C)

所以tan(A+B)=tan(π-C)

则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)

整理可得

tanA+tanB+tanC=tanAtanBtanC

类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ

向量计算

设a=(x,y),b=(x',y')。

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

AB-AC=CB. 即“共同起点,指向被减”

a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

4、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)·b=λ(a·b)=(a·λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积

定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。

定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a·b=x·x'+y·y'。

向量的数量积的运算率

a·b=b·a(交换率);

(a+b)·c=a·c+b·c(分配率);

向量的数量积的性质

a·a=|a|的平方。

a⊥b 〈=〉a·b=0。

|a·b|≤|a|·|b|。

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。

2、向量的数量积不满足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。

3、|a·b|≠|a|·|b|

4、由 |a|=|b| ,推不出 a=b或a=-b。

立体几何基本课题

包括:

- 面和线的重合

- 两面角和立体角

- 方块, 长方体, 平行六面体

- 四面体和其他棱锥

- 棱柱

- 八面体, 十二面体, 二十面体

- 圆锥,圆柱

- 球

- 其他二次曲面: 回转椭球, 椭球, 抛物面 ,双曲面

公理

立体几何中有4个公理

公理1 如果一条直线上的两点在一个平面内,那么这条直线在此平面内.

公理2 过不在一条直线上的三点,有且只有一个平面.

公理3 如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.

公理4 平行于同一条直线的两条直线平行.

立方图形

立体几何公式

名称 符号 面积S 体积V

正方体 a——边长 S=6a^2 V=a^3

长方体 a——长 S=2(ab+ac+bc) V=abc

b——宽

c——高

棱柱 S——底面积 V=Sh

h——高

棱锥 S——底面积 V=Sh/3

h——高

棱台 S1和S2——上、下底面积 V=h〔S1+S2+√(S1^2)/2〕/3

h——高

拟柱体 S1——上底面积 V=h(S1+S2+4S0)/6

S2——下底面积

S0——中截面积

h——高

圆柱 r——底半径 C=2πr V=S底h=∏rh

h——高

C——底面周长

S底——底面积 S底=πR^2

S侧——侧面积 S侧=Ch

S表——表面积 S表=Ch+2S底

S底=πr^2

空心圆柱 R——外圆半径

r——内圆半径

h——高 V=πh(R^2-r^2)

直圆锥 r——底半径

h——高 V=πr^2h/3

圆台 r——上底半径

R——下底半径

h——高 V=πh(R^2+Rr+r^2)/3

球 r——半径

d——直径 V=4/3πr^3=πd^2/6

球缺 h——球缺高

r——球半径

a——球缺底半径 a^2=h(2r-h) V=πh(3a^2+h^2)/6 =πh2(3r-h)/3

球台 r1和r2——球台上、下底半径

h——高 V=πh[3(r12+r22)+h2]/6

圆环体 R——环体半径

D——环体直径

r——环体截面半径

d——环体截面直径 V=2π^2Rr^2 =π^2Dd^2/4

桶状体 D——桶腹直径

d——桶底直径

h——桶高 V=πh(2D^2+d2^)/12 (母线是圆弧形,圆心是桶的中心)

V=πh(2D^2+Dd+3d^2/4)/15 (母线是抛物线形)

平面解析几何包含一下几部分

一 直角坐标

1.1 有向线段

1.2 直线上的点的直角坐标

1.3 几个基本公式

1.4 平面上的点的直角坐标

1.5 射影的基本原理

1.6 几个基本公式

二 曲线与议程

2.1 曲线的直解坐标方程的定义

2.2 已各曲线,求它的方程

2.3 已知曲线的方程,描绘曲线

2.4 曲线的交点

三 直线

3.1 直线的倾斜角和斜率

3.2 直线的方程

Y=kx+b

3.3 直线到点的有向距离

3.4 二元一次不等式表示的平面区域

3.5 两条直线的相关位置

3.6 二元二方程表示两条直线的条件

3.7 三条直线的相关位置

3.8 直线系

四 圆

4.1 圆的定义

4.2 圆的方程

4.3 点和圆的相关位置

4.4 圆的切线

4.5 点关于圆的切点弦与极线

4.6 共轴圆系

4.7 平面上的反演变换

五 椭圆

5.1 椭圆的定义

5.2 用平面截直圆锥面可以得到椭圆

5.3 椭圆的标准方程

5.4 椭圆的基本性质及有关概念

5.5 点和椭圆的相关位置

5.6 椭圆的切线与法线

5.7 点关于椭圆的切点弦与极线

5.8 椭圆的面积

六 双曲线

6.1 双曲线的定义

6.2 用平面截直圆锥面可以得到双曲线

6.3 双曲线的标准方程

6.4 双曲线的基本性质及有关概念

6.5 等轴双曲线

6.6 共轭双曲线

6.7 点和双曲线的相关位置

6.8 双曲线的切线与法线

6.9 点关于双曲线的切点弦与极线

七 抛物线

7.1 抛物线的定义

7.2 用平面截直圆锥面可以得到抛物线

7.3 抛物线的标准方程

7.4 抛物线的基本性质及有关概念

7.5 点和抛物线的相关位置

7.6 抛物线的切线与法线

7.7 点关于抛物线的切点弦与极线

7.8 抛物线弓形的面积

八 坐标变换·二次曲线的一般理论

8.1 坐标变换的概念

8.2 坐标轴的平移

8.3 利用平移化简曲线方程

8.4 圆锥曲线的更一般的标准方程

8.5 坐标轴的旋转

8.6 坐标变换的一般公式

8.7 曲线的分类

8.8 二次曲线在直角坐标变换下的不变量

8.9 二元二次方程的曲线

8.10 二次曲线方程的化简

8.11 确定一条二次曲线的条件

8.12 二次曲线系

九 参数方程

十 极坐标

十一 斜角坐标 两角和公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB �

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB

tan(A+B) = (tanA+tanB)/(1-tanAtanB)

tan(A-B) = (tanA-tanB)/(1+tanAtanB)

cot(A+B) = (cotAcotB-1)/(cotB+cotA) �

cot(A-B) = (cotAcotB+1)/(cotB-cotA)

[编辑本段]倍角公式

Sin2A=2SinA•CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=2tanA/1-tanA^2

[编辑本段]三倍角公式

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

[编辑本段]半角公式

[编辑本段]和差化积

sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]

sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]

cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]

cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]

tanA+tanB=sin(A+B)/cosAcosB

[编辑本段]积化和差

sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]

cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]

sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]

cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]

[编辑本段]诱导公式

sin(-a) = -sin(a)

cos(-a) = cos(a)

sin(π/2-a) = cos(a)

cos(π/2-a) = sin(a)

sin(π/2+a) = cos(a)

cos(π/2+a) = -sin(a)

sin(π-a) = sin(a)

cos(π-a) = -cos(a)

sin(π+a) = -sin(a)

cos(π+a) = -cos(a)

tanA= sinA/cosA

tan(π/2+α)=-cotα

tan(π/2-α)=cotα

tan(π-α)=-tanα

tan(π+α)=tanα

[编辑本段]万能公式

[编辑本段]其它公式

[编辑本段]其他非重点三角函数

csc(a) = 1/sin(a)

sec(a) = 1/cos(a)

[编辑本段]双曲函数

sinh(a) = [e^a-e^(-a)]/2

cosh(a) = [e^a+e^(-a)]/2

tg h(a) = sin h(a)/cos h(a)

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等:

sin(2kπ+α)= sinα

cos(2kπ+α)= cosα

tan(2kπ+α)= tanα

cot(2kπ+α)= cotα

公式二:

设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)= -sinα

cos(π+α)= -cosα

tan(π+α)= tanα

cot(π+α)= cotα

公式三:

任意角α与 -α的三角函数值之间的关系:

sin(-α)= -sinα

cos(-α)= cosα

tan(-α)= -tanα

cot(-α)= -cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)= sinα

cos(π-α)= -cosα

tan(π-α)= -tanα

cot(π-α)= -cotα

公式五:

利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)= -sinα

cos(2π-α)= cosα

tan(2π-α)= -tanα

cot(2π-α)= -cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系:

sin(π/2+α)= cosα

cos(π/2+α)= -sinα

tan(π/2+α)= -cotα

cot(π/2+α)= -tanα

sin(π/2-α)= cosα

cos(π/2-α)= sinα

tan(π/2-α)= cotα

cot(π/2-α)= tanα

sin(3π/2+α)= -cosα

cos(3π/2+α)= sinα

tan(3π/2+α)= -cotα

cot(3π/2+α)= -tanα

sin(3π/2-α)= -cosα

cos(3π/2-α)= -sinα

tan(3π/2-α)= cotα

cot(3π/2-α)= tanα

(以上k∈Z)

这个物理常用公式我费了半天的劲才输进来,希望对大家有用

A·sin(ωt+θ)+ B·sin(ωt+φ) =

√{(A^2 +B^2 +2ABcos(θ-φ)} • sin{ ωt + arcsin[ (A•sinθ+B•sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }

√表示根号,包括{……}中的内容

高一数学公式(高一数学公式整理总结)