十大无解数学题,十大数学难题
十大无解数学题,十大数学难题

十大无解数学题目录

世界上无人能解的数学题是什么?

十大数学难题

1. 费马大定理。

2. 黎曼猜想。

3. 四色定理。

4. 康托尔连续统假设。

5. 柯西-施瓦茨不等式。

6. 斐波那契数列。

世界上无人能解的数学题是什么?

世界上无人能解的数学题有:

1、Collatz猜想

随意选一个整数,如果它是偶数,那么将它除以2;如果它是奇数,那么将它乘以3再加1。

对于得到的新的数,重复操作上面的运算过程。

如果你一直操作下去,你每次都终将得到1。

数学家们试验了数百万个数,至今还没发现哪怕一个不收敛到1的例子。

然而问题在于,数学家们也没办法证明一定不存在一个特殊的数,在这一操作下最终不在1上收敛。

有可能存在一个特别巨大的数,在这一套操作下趋向于无穷,或者趋向于一个除了1以外的循环的数。

但没有人能证明这些特例的存在。

2、移动沙发问题

你要搬新家了,想把你的沙发搬过去。

问题是,走廊有个转角,你不得不在角落位置上给沙发转方向。

如果这个沙发很小,那没什么问题。

如果是个挺大的沙发,估计得卡在角落上。

如果你是个数学家,你会问自己:能够在角落上转过来的最大的沙发有多大呢?这个沙发不一定得是矩形,可以说任何形状。

这便是“移动沙发问题”的核心,具体来说就是:,走廊宽为1,转角90°,求能转过转角的最大二维面积是多少?能转过转角的最大二维面积被称为“沙发常数”。

因为根本就没人知道它到底有多大,但知道有一些相当大的沙发可以转得过去,所以知道沙发常数一定比它们大;也有一些沙发无论如何都转不过去,因此沙发常数一定比这些转不过去的面积小。

迄今为止,只知道沙发常数落在2.2195到2.8284之间。

3、完美立方体问题

各位模友,应该都还记得,a2+b2=c2吗?a、b、c三个字母表示的三边长。

三角形指的是三边长都是整数的直角三角形,即满足a2+b2=c2且a、b、c都是整数。

将这个概念扩展到三维,在,我们需要四个数a、b、c和g。

前三个数是立方体的三维边长,g是立方体的空间长度。

正如有些三角形的三边都是整数一样。

存在一些立方体的三边和体对角线(a、b、c和g)都是整数,但对于立方体来说还有三个面对角线(d、e和f),这就带来一个有趣的问题:有没有立方体满足这个7个边长都是整数的条件呢。

问题的目标在于找到一个立方体满足a2+b2+c2=g2,且全部的边和对角线长度都是整数,这种立方体被称为完美立方体(perfectcuboid)。

数学家们测试了各种不同的可能构型,还没找到任何一个满足条件的情况。

但他们也不能证明这样的立方体不存在,因此搜寻完美立方体的工作还在继续。

4、内接正方形问题

随手画一个闭合曲线,这个曲线不一定要是圆,可以是任何你想要的形状,但曲线的起终点必须重合且曲线不能穿越自身,在这个曲线上可能找到四个点连成一个正方形。

内接正方形假设的内容就是,每条闭合曲线(确切来说是每个平面内的简单闭合曲线)一定有一个内接正方形,这个正方形上四点都在这个闭合曲线上的某处。

许多闭合曲线上内接其他形状的问题都已经得到了解决,例如矩形或者三角形等,但正方形却有点复杂,至今数学家们还没有搞明白这个问题的正式证明。

5、美好结局问题

这个问题之所以被命名为“美好结局问题”,是因为它促成了一对数学家的美好姻缘:数学家GeorgeSzekeres和EstherKlein都曾致力于解决这一问题,他们最终结婚了(而这个问题仍未解决)。

概括来说,这个问题是这样的:在一张纸面上随机放置5个点。

假设这5个点排布不特殊(比如排在一条直线上),你总能找到其中四个点构成凸,也即四个边夹角小于180°的四边形。

这个定理的要点在于,不管这5个点的位置排布如何,你总能在5个点中构造一个凸四边形。

十大数学难题

1、几何尺规作图问题

这里所说的“几何尺规作图问题”是指做图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。

“几何尺规作图问题”包括以下四个问题

1.化圆为方-求作一正方形使其面积等於一已知圆;

2.三等分任意角;

3.倍立方-求作一立方体使其体积是一已知立方体的二倍。

4.做正十七边形。

以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。

第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但後来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

2、蜂窝猜想

四世纪古希腊数学家佩波斯提出,蜂窝的优美形状,是自然界最有效劳动的代表。

他猜想,人们所见到的、截面呈六边形的蜂窝,是蜜蜂采用最少量的蜂蜡建造成的。

他的这一猜想称为蜂窝猜想,但这一猜想一直没有人能证明。

1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。

1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。

但如果多边形的边是曲线时,会发生什么情况呢?陶斯认为,正六边形与其他任何形状的图形相比,它的周长最小,但他不能证明这一点。

而黑尔在考虑了周边是曲线时,无论是曲线向外突,还是向内凹,都证明了由许多正六边形组成的图形周长最校他已将19页的证明过程放在因特网上,许多专家都已看到了这一证明,认为黑尔的证明是正确的。

3、孪生素数猜想

1849年,波林那克提出孪生素生猜想(the conjecture of twin primes),即猜测存在无穷多对孪生素数。

孪生素数即相差2的一对素数。

例如3和5 ,5和7,11和13,…,10016957和10016959等等都是孪生素数。

1966年,中国数学家陈景润在这方面得到最好的结果:存在无穷多个素数p,使p+2是不超过两个素数之积。

孪生素数猜想至今仍未解决,但一般人都认为是正确的。

4、费马最後定理

在三百六十多年前的某一天,费马突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内容是有关一个方程式 xn +yn = zn

的正整数解的问题,当n=2时就是我们所熟知的毕氏定理(中国古代又称勾股弦定理)。

费马声称当n>2时,就找不到满足

xn +yn = zn

的整数解,例如:方程式

x3 +y3 = z3

就无法找到整数解。

始作俑者的费马也因此留下了千古的难题,三百多年来无数的数学家尝试要去解决这个难题却都徒劳无功。

这个号称世纪难题的费马最後定理也就成了数学界的心头大患,极欲解之而後快。

不过这个三百多年的数学悬案终於解决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。

其实威利斯是利用二十世纪过去三十年来抽象数学发展的结果加以证明。

5、四色猜想

1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。

1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。

世界上许多一流的数学家都纷纷参加了四色猜想的大会战。

1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。

四色猜想的计算机证明,轰动了世界。

6、哥德巴赫猜想

公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:

(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。

(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。

从此,这道著名的数学难题引起了世界上成千上万数学家的注意。

200年过去了,没有人证明它。

哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。

免费下载这份资料?立即下载

十大无解数学题目录

世界上无人能解的数学题是什么?

十大数学难题

1. 费马大定理。

2. 黎曼猜想。

3. 四色定理。

4. 康托尔连续统假设。

5. 柯西-施瓦茨不等式。

6. 斐波那契数列。

世界上无人能解的数学题是什么?

世界上无人能解的数学题有:

1、Collatz猜想

随意选一个整数,如果它是偶数,那么将它除以2;如果它是奇数,那么将它乘以3再加1。

对于得到的新的数,重复操作上面的运算过程。

如果你一直操作下去,你每次都终将得到1。

数学家们试验了数百万个数,至今还没发现哪怕一个不收敛到1的例子。

然而问题在于,数学家们也没办法证明一定不存在一个特殊的数,在这一操作下最终不在1上收敛。

有可能存在一个特别巨大的数,在这一套操作下趋向于无穷,或者趋向于一个除了1以外的循环的数。

但没有人能证明这些特例的存在。

2、移动沙发问题

你要搬新家了,想把你的沙发搬过去。

问题是,走廊有个转角,你不得不在角落位置上给沙发转方向。

如果这个沙发很小,那没什么问题。

如果是个挺大的沙发,估计得卡在角落上。

如果你是个数学家,你会问自己:能够在角落上转过来的最大的沙发有多大呢?这个沙发不一定得是矩形,可以说任何形状。

这便是“移动沙发问题”的核心,具体来说就是:,走廊宽为1,转角90°,求能转过转角的最大二维面积是多少?能转过转角的最大二维面积被称为“沙发常数”。

因为根本就没人知道它到底有多大,但知道有一些相当大的沙发可以转得过去,所以知道沙发常数一定比它们大;也有一些沙发无论如何都转不过去,因此沙发常数一定比这些转不过去的面积小。

迄今为止,只知道沙发常数落在2.2195到2.8284之间。

3、完美立方体问题

各位模友,应该都还记得,a2+b2=c2吗?a、b、c三个字母表示的三边长。

三角形指的是三边长都是整数的直角三角形,即满足a2+b2=c2且a、b、c都是整数。

将这个概念扩展到三维,在,我们需要四个数a、b、c和g。

前三个数是立方体的三维边长,g是立方体的空间长度。

正如有些三角形的三边都是整数一样。

存在一些立方体的三边和体对角线(a、b、c和g)都是整数,但对于立方体来说还有三个面对角线(d、e和f),这就带来一个有趣的问题:有没有立方体满足这个7个边长都是整数的条件呢。

问题的目标在于找到一个立方体满足a2+b2+c2=g2,且全部的边和对角线长度都是整数,这种立方体被称为完美立方体(perfectcuboid)。

数学家们测试了各种不同的可能构型,还没找到任何一个满足条件的情况。

但他们也不能证明这样的立方体不存在,因此搜寻完美立方体的工作还在继续。

4、内接正方形问题

随手画一个闭合曲线,这个曲线不一定要是圆,可以是任何你想要的形状,但曲线的起终点必须重合且曲线不能穿越自身,在这个曲线上可能找到四个点连成一个正方形。

内接正方形假设的内容就是,每条闭合曲线(确切来说是每个平面内的简单闭合曲线)一定有一个内接正方形,这个正方形上四点都在这个闭合曲线上的某处。

许多闭合曲线上内接其他形状的问题都已经得到了解决,例如矩形或者三角形等,但正方形却有点复杂,至今数学家们还没有搞明白这个问题的正式证明。

5、美好结局问题

这个问题之所以被命名为“美好结局问题”,是因为它促成了一对数学家的美好姻缘:数学家GeorgeSzekeres和EstherKlein都曾致力于解决这一问题,他们最终结婚了(而这个问题仍未解决)。

概括来说,这个问题是这样的:在一张纸面上随机放置5个点。

假设这5个点排布不特殊(比如排在一条直线上),你总能找到其中四个点构成凸,也即四个边夹角小于180°的四边形。

这个定理的要点在于,不管这5个点的位置排布如何,你总能在5个点中构造一个凸四边形。

十大数学难题

1、几何尺规作图问题

这里所说的“几何尺规作图问题”是指做图限制只能用直尺、圆规,而这里的直尺是指没有刻度只能画直线的尺。

“几何尺规作图问题”包括以下四个问题

1.化圆为方-求作一正方形使其面积等於一已知圆;

2.三等分任意角;

3.倍立方-求作一立方体使其体积是一已知立方体的二倍。

4.做正十七边形。

以上四个问题一直困扰数学家二千多年都不得其解,而实际上这前三大问题都已证明不可能用直尺圆规经有限步骤可解决的。

第四个问题是高斯用代数的方法解决的,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但後来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。

2、蜂窝猜想

四世纪古希腊数学家佩波斯提出,蜂窝的优美形状,是自然界最有效劳动的代表。

他猜想,人们所见到的、截面呈六边形的蜂窝,是蜜蜂采用最少量的蜂蜡建造成的。

他的这一猜想称为蜂窝猜想,但这一猜想一直没有人能证明。

1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。

1943年,匈牙利数学家陶斯巧妙地证明,在所有首尾相连的正多边形中,正多边形的周长是最小的。

但如果多边形的边是曲线时,会发生什么情况呢?陶斯认为,正六边形与其他任何形状的图形相比,它的周长最小,但他不能证明这一点。

而黑尔在考虑了周边是曲线时,无论是曲线向外突,还是向内凹,都证明了由许多正六边形组成的图形周长最校他已将19页的证明过程放在因特网上,许多专家都已看到了这一证明,认为黑尔的证明是正确的。

3、孪生素数猜想

1849年,波林那克提出孪生素生猜想(the conjecture of twin primes),即猜测存在无穷多对孪生素数。

孪生素数即相差2的一对素数。

例如3和5 ,5和7,11和13,…,10016957和10016959等等都是孪生素数。

1966年,中国数学家陈景润在这方面得到最好的结果:存在无穷多个素数p,使p+2是不超过两个素数之积。

孪生素数猜想至今仍未解决,但一般人都认为是正确的。

4、费马最後定理

在三百六十多年前的某一天,费马突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内容是有关一个方程式 xn +yn = zn

的正整数解的问题,当n=2时就是我们所熟知的毕氏定理(中国古代又称勾股弦定理)。

费马声称当n>2时,就找不到满足

xn +yn = zn

的整数解,例如:方程式

x3 +y3 = z3

就无法找到整数解。

始作俑者的费马也因此留下了千古的难题,三百多年来无数的数学家尝试要去解决这个难题却都徒劳无功。

这个号称世纪难题的费马最後定理也就成了数学界的心头大患,极欲解之而後快。

不过这个三百多年的数学悬案终於解决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。

其实威利斯是利用二十世纪过去三十年来抽象数学发展的结果加以证明。

5、四色猜想

1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。

1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。

世界上许多一流的数学家都纷纷参加了四色猜想的大会战。

1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。

四色猜想的计算机证明,轰动了世界。

6、哥德巴赫猜想

公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:

(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。

(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。

从此,这道著名的数学难题引起了世界上成千上万数学家的注意。

200年过去了,没有人证明它。

哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。

十大无解数学题,十大数学难题