二项式定理知识点大全(二项式定理的应用)
二项式定理知识点大全(二项式定理的应用)

二项式定理知识点 二项式定理有什么用

1、二项式定理(英语:binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。

2、牛顿以二项式定理作为基石发明出了微积分。其在初等数学中应用主要在于一些粗略的分析和估计以及证明恒等式等。

3、这个定理在遗传学中也有其用武之地,具体应用范围为:推测自交后代群体的基因型和概率、推测自交后代群体的表现型和概率、推测杂交后代群体的表现型分布和概率、通过测交分析杂合体自交后代的性状表现和概率、推测夫妻所生孩子的性别分布和概率、推测平衡状态群体的基因或基因型频率等。

高中数学二项式定理推导

高中数学二项式定理推导如下:

二项式定理是高中数学中的一个重要知识点,它描述了一个二元多项式的幂展开式。该定理可以在许多数学和科学领域中使用,如组合学、概率论、微积分和统计学。本文将从二项式定理的定义、性质和应用等方面来进行讨论。

一、二项式定理的定义

二项式定理可以用来展开一个二元多项式的幂,这个多项式由两个变量a和b组成,可以表示为(a+b)^n,其中n为正整数。展开式的一般形式如下:

(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+…+C(n,n)b^n

其中,C(n,k)表示组合数,它是n个物品中选取k个物品的组合数,可以用以下公式来计算:

C(n,k)=n!/(k!(n-k)!)

其中,n!表示n的阶乘,即n!=n*(n-1)*(n-2)*…*2*1。在这个展开式中,每一项都是由a和b的幂次方乘以一个系数得到的。系数由组合数C(n,k)决定,它描述了在a和b中选取k个的不同组合方式的数量。

二项式定理的应用

二项式定理又称:二项式展开式,是一种数学公式,它包含了各种可能的组合,并给出了每个组合的结果。

二项式定理的公式为:(a+b)^n= C(n,0)a^n+ C(n,1)a^(n-1)b+ C(n,2)a^(n-2)b^2+...+C(n,r)a^(n-r)b^r+...+C(n,n)b^n。

其中,C(n,r)代表组合数,表示从n个元素中选择r个元素的组合数,等于n的阶乘除以(n-r)的阶乘和r的阶乘的积。

每一项C(n,r)a^(n-r)b^r都表示,在所有可能的(n-r)个a和r个b的组合中,选择一个特定的组合的结果。

二项式定理的应用:

1、组合数计算:二项式定理的一个重要应用是计算组合数。在解决排列、组合和概率问题时,我们经常需要计算从n个元素中选取r个元素的组合数。利用二项式定理,我们可以方便地得到这些组合数的公式,而无需手动计算。例如,C(n,r)=n!/[(n-r)!*r!],这就是利用二项式定理得到的组合数公式。

二项式公式大全

二项式定理论述了(a+b)n的展开式.人们只要有初步的代数知识和足够的毅力,便可以得到如下公式,

(a+b)2=a2+2ab+b2

(a+b)3=a3+3a2b+3ab2+b3

(a+b)4=a4+4a3b+6a2b2+4ab3+b4

等等.对于(a+b)12,人们显然希望不必经由(a+b)十几次自乘的冗长计算,就能够发现其展开式中a7b5的系数.早在牛顿出生之前很久,人们便已提出并解决了二项式的展开式问题.中国数学家杨辉早在13世纪就发现了二项式的秘密,但他的著作直到近代才为欧洲人所知.维埃特在其《分析术引论》前言的命题XI中也同样论证了二项式问题.但这一伟大发现通常是以布莱兹·帕斯卡的名字命名的.帕斯卡注意到,二项式的系数可以很容易地从我们现在称为“帕斯卡三角”的排列中得到:

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

等等

在这个三角形中,每一个新增数字都等于其上左右两个数字之和.因此,根据帕斯卡三角,下一行的数值为

1 8 28 56 70 56 28 8 1

例如,表值56就等于其上左右两个数字21+35之和.

帕斯卡三角与(a+b)8展开式之间的联系是非常直接的,因为三角形的最后一行数值为我们提供了必要的系数,即

(a+b)8=a8+8a7b+28a6b2+56a5b3

+70a4b4+56a3b5+28a2b6+8ab7+b8

我们只要将三角形的数值再向下延伸几行,就可以得到(a+b)12展开式中a7b5的系数为792.所以,帕斯卡三角的实用性是非常明显的.

年轻的牛顿经过对二项展开式的研究,发明了一个能够直接导出二项式系数的公式,而不必再繁琐地延伸三角形到所需要的那行了.并且,他对模式的持续性的固有信念使他认为,能够正确推导出诸如(a+b)2或(a+b)3

这种形式的二项式.

关于分数指数和负数指数问题,在此还需多说一句.我们知道,在初等

这些关系.

以下所列牛顿的二项展开式公式是他在1676年写给其同时代伟人戈特弗里德·威廉·莱布尼兹的一封信中阐明的(此信经由皇家学会的亨利·奥尔登伯格转交).牛顿写道:

项式的“指数是整数还是(比如说)分数,是正数还是负数”的问题.公式中的A、B、C等表示展开式中该字母所在项的前一项.

对于那些见过现代形式的二项展开式的读者来说,牛顿的公式可能显得过于复杂和陌生.但只要仔细研究一下,就可以解决读者的任何疑问.我们首先来看,

也许,这种形式看起来就比较熟悉了.

我们不妨应用牛顿的公式来解一些具体例题.例如,在展开(1+x)3时,

这恰恰就是帕斯卡三角的非列系数.并且,由于我们的原指数是正整数3,所以,展开式到第四项结束.

但是,当指数是负数时,又有一个完全不同的情况摆在牛顿面前.例如,展开(1+x)-3,根据牛顿公式,我们得到

或简化为

方程右边永远没有终止.应用负指数定义,这一方程就成为

或其等价方程

牛顿将上式交叉相乘并消去同类项,证实

(1+3x+3x2+x3)(1+3x+6x2-10x3+15x4-……)=1

牛顿用等式右边的无穷级数自乘,也就是求这无穷级数的平方,以检验这一貌似奇特的公式,其结果如下:

所以

这就证实了

与牛顿原推导结果相同.

牛顿写道;“用这一定理进行开方运算非常简便.”例如,假设我们求

现在,将等式右边的平方根代入前面标有()符号的二项展开式中的前6项,当然,此处要用29替换原公式中的x,因而,我

了前6个常数项.如果我们取二项展开式中更多的项,我们就会得到更加精确的近似值.并且,我们还可以用同样的方法求出三次根、四次根,等等,

续演算.

别奇怪的.而真正令人吃惊的是,牛顿的二项式定理精确地告诉我们应该采用哪些分数,而这些分数则是以一种完全机械的方式得出的,无须任何特殊的见解与机巧.这显然是一个求任何次方根的有效而巧妙的方法.

二项式定理是我们即将讨论的伟大定理的两个必要前提之一.另一个前提是牛顿的逆流数,也就是我们今天所说的积分.但是,对逆流数的详尽说明属于微积分问题,超出了本书的范围.然而,我们可以用牛顿的话来阐述其重要定理,并举一两个例子来加以说明.

牛顿在1669年中撰著的《运用无穷多项方程的分析学》一书中提出了逆流数问题,但这部论著直到1711年才发表.这是牛顿第一次提出逆流数问题,他将他的这部论文交给几个数学同事传阅.比如,我们知道,艾萨克·巴罗就曾看到过这部论文,他在1669年7月20日给他一个熟人的信里写道:“……我的一个朋友……在这些问题上很有天分,他曾带给我几篇论文.”巴罗或《分析学》一书的任何其他读者遇到的第一个法则如下.

设任意曲线AD的底边为AB,其垂直纵边为BD,设AB=x,

BD=y,并设a、b、c等为已知量,m和n为整数.则:

到x点之内的图形的面积.根据牛顿法则,这一图形的面积为

按照牛顿公式,面积为12x2,对这一结果,可以很容易地用三角形面积公式

牛顿又进一步说明了《分析学》一书的法则2,“如果y值是由几项之和组成的,那么,其面积也同样等于每一项面积之和.”例如,他写道,曲

那么,牛顿所采用的两个工具就是:二项式定理和求一定曲线下面积的流数法.他运用这两个工具,可以得心应手地解决许多复杂的数学与物理问题,而我们将要看到的是牛顿如何应用这两个工具,使一个古老的问题获得了全新的生命:计算π的近似值.我们在第四章的后记中,追溯了这一著名数字的某些历史,确认了某些学者,如阿基米德、韦达和卢道尔夫·冯瑟伦在计算更精确的π近似值方面所作出的贡献.1670年左右,这个问题引起了艾萨克·牛顿的注意.他运用他奇妙的新方法,对这一古老问题进行研究,并取得了辉煌的成就.

免费下载这份资料?立即下载

二项式定理知识点 二项式定理有什么用

1、二项式定理(英语:binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。

2、牛顿以二项式定理作为基石发明出了微积分。其在初等数学中应用主要在于一些粗略的分析和估计以及证明恒等式等。

3、这个定理在遗传学中也有其用武之地,具体应用范围为:推测自交后代群体的基因型和概率、推测自交后代群体的表现型和概率、推测杂交后代群体的表现型分布和概率、通过测交分析杂合体自交后代的性状表现和概率、推测夫妻所生孩子的性别分布和概率、推测平衡状态群体的基因或基因型频率等。

高中数学二项式定理推导

高中数学二项式定理推导如下:

二项式定理是高中数学中的一个重要知识点,它描述了一个二元多项式的幂展开式。该定理可以在许多数学和科学领域中使用,如组合学、概率论、微积分和统计学。本文将从二项式定理的定义、性质和应用等方面来进行讨论。

一、二项式定理的定义

二项式定理可以用来展开一个二元多项式的幂,这个多项式由两个变量a和b组成,可以表示为(a+b)^n,其中n为正整数。展开式的一般形式如下:

(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+C(n,2)a^(n-2)b^2+…+C(n,n)b^n

其中,C(n,k)表示组合数,它是n个物品中选取k个物品的组合数,可以用以下公式来计算:

C(n,k)=n!/(k!(n-k)!)

其中,n!表示n的阶乘,即n!=n*(n-1)*(n-2)*…*2*1。在这个展开式中,每一项都是由a和b的幂次方乘以一个系数得到的。系数由组合数C(n,k)决定,它描述了在a和b中选取k个的不同组合方式的数量。

二项式定理的应用

二项式定理又称:二项式展开式,是一种数学公式,它包含了各种可能的组合,并给出了每个组合的结果。

二项式定理的公式为:(a+b)^n= C(n,0)a^n+ C(n,1)a^(n-1)b+ C(n,2)a^(n-2)b^2+...+C(n,r)a^(n-r)b^r+...+C(n,n)b^n。

其中,C(n,r)代表组合数,表示从n个元素中选择r个元素的组合数,等于n的阶乘除以(n-r)的阶乘和r的阶乘的积。

每一项C(n,r)a^(n-r)b^r都表示,在所有可能的(n-r)个a和r个b的组合中,选择一个特定的组合的结果。

二项式定理的应用:

1、组合数计算:二项式定理的一个重要应用是计算组合数。在解决排列、组合和概率问题时,我们经常需要计算从n个元素中选取r个元素的组合数。利用二项式定理,我们可以方便地得到这些组合数的公式,而无需手动计算。例如,C(n,r)=n!/[(n-r)!*r!],这就是利用二项式定理得到的组合数公式。

二项式公式大全

二项式定理论述了(a+b)n的展开式.人们只要有初步的代数知识和足够的毅力,便可以得到如下公式,

(a+b)2=a2+2ab+b2

(a+b)3=a3+3a2b+3ab2+b3

(a+b)4=a4+4a3b+6a2b2+4ab3+b4

等等.对于(a+b)12,人们显然希望不必经由(a+b)十几次自乘的冗长计算,就能够发现其展开式中a7b5的系数.早在牛顿出生之前很久,人们便已提出并解决了二项式的展开式问题.中国数学家杨辉早在13世纪就发现了二项式的秘密,但他的著作直到近代才为欧洲人所知.维埃特在其《分析术引论》前言的命题XI中也同样论证了二项式问题.但这一伟大发现通常是以布莱兹·帕斯卡的名字命名的.帕斯卡注意到,二项式的系数可以很容易地从我们现在称为“帕斯卡三角”的排列中得到:

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

等等

在这个三角形中,每一个新增数字都等于其上左右两个数字之和.因此,根据帕斯卡三角,下一行的数值为

1 8 28 56 70 56 28 8 1

例如,表值56就等于其上左右两个数字21+35之和.

帕斯卡三角与(a+b)8展开式之间的联系是非常直接的,因为三角形的最后一行数值为我们提供了必要的系数,即

(a+b)8=a8+8a7b+28a6b2+56a5b3

+70a4b4+56a3b5+28a2b6+8ab7+b8

我们只要将三角形的数值再向下延伸几行,就可以得到(a+b)12展开式中a7b5的系数为792.所以,帕斯卡三角的实用性是非常明显的.

年轻的牛顿经过对二项展开式的研究,发明了一个能够直接导出二项式系数的公式,而不必再繁琐地延伸三角形到所需要的那行了.并且,他对模式的持续性的固有信念使他认为,能够正确推导出诸如(a+b)2或(a+b)3

这种形式的二项式.

关于分数指数和负数指数问题,在此还需多说一句.我们知道,在初等

这些关系.

以下所列牛顿的二项展开式公式是他在1676年写给其同时代伟人戈特弗里德·威廉·莱布尼兹的一封信中阐明的(此信经由皇家学会的亨利·奥尔登伯格转交).牛顿写道:

项式的“指数是整数还是(比如说)分数,是正数还是负数”的问题.公式中的A、B、C等表示展开式中该字母所在项的前一项.

对于那些见过现代形式的二项展开式的读者来说,牛顿的公式可能显得过于复杂和陌生.但只要仔细研究一下,就可以解决读者的任何疑问.我们首先来看,

也许,这种形式看起来就比较熟悉了.

我们不妨应用牛顿的公式来解一些具体例题.例如,在展开(1+x)3时,

这恰恰就是帕斯卡三角的非列系数.并且,由于我们的原指数是正整数3,所以,展开式到第四项结束.

但是,当指数是负数时,又有一个完全不同的情况摆在牛顿面前.例如,展开(1+x)-3,根据牛顿公式,我们得到

或简化为

方程右边永远没有终止.应用负指数定义,这一方程就成为

或其等价方程

牛顿将上式交叉相乘并消去同类项,证实

(1+3x+3x2+x3)(1+3x+6x2-10x3+15x4-……)=1

牛顿用等式右边的无穷级数自乘,也就是求这无穷级数的平方,以检验这一貌似奇特的公式,其结果如下:

所以

这就证实了

与牛顿原推导结果相同.

牛顿写道;“用这一定理进行开方运算非常简便.”例如,假设我们求

现在,将等式右边的平方根代入前面标有()符号的二项展开式中的前6项,当然,此处要用29替换原公式中的x,因而,我

了前6个常数项.如果我们取二项展开式中更多的项,我们就会得到更加精确的近似值.并且,我们还可以用同样的方法求出三次根、四次根,等等,

续演算.

别奇怪的.而真正令人吃惊的是,牛顿的二项式定理精确地告诉我们应该采用哪些分数,而这些分数则是以一种完全机械的方式得出的,无须任何特殊的见解与机巧.这显然是一个求任何次方根的有效而巧妙的方法.

二项式定理是我们即将讨论的伟大定理的两个必要前提之一.另一个前提是牛顿的逆流数,也就是我们今天所说的积分.但是,对逆流数的详尽说明属于微积分问题,超出了本书的范围.然而,我们可以用牛顿的话来阐述其重要定理,并举一两个例子来加以说明.

牛顿在1669年中撰著的《运用无穷多项方程的分析学》一书中提出了逆流数问题,但这部论著直到1711年才发表.这是牛顿第一次提出逆流数问题,他将他的这部论文交给几个数学同事传阅.比如,我们知道,艾萨克·巴罗就曾看到过这部论文,他在1669年7月20日给他一个熟人的信里写道:“……我的一个朋友……在这些问题上很有天分,他曾带给我几篇论文.”巴罗或《分析学》一书的任何其他读者遇到的第一个法则如下.

设任意曲线AD的底边为AB,其垂直纵边为BD,设AB=x,

BD=y,并设a、b、c等为已知量,m和n为整数.则:

到x点之内的图形的面积.根据牛顿法则,这一图形的面积为

按照牛顿公式,面积为12x2,对这一结果,可以很容易地用三角形面积公式

牛顿又进一步说明了《分析学》一书的法则2,“如果y值是由几项之和组成的,那么,其面积也同样等于每一项面积之和.”例如,他写道,曲

那么,牛顿所采用的两个工具就是:二项式定理和求一定曲线下面积的流数法.他运用这两个工具,可以得心应手地解决许多复杂的数学与物理问题,而我们将要看到的是牛顿如何应用这两个工具,使一个古老的问题获得了全新的生命:计算π的近似值.我们在第四章的后记中,追溯了这一著名数字的某些历史,确认了某些学者,如阿基米德、韦达和卢道尔夫·冯瑟伦在计算更精确的π近似值方面所作出的贡献.1670年左右,这个问题引起了艾萨克·牛顿的注意.他运用他奇妙的新方法,对这一古老问题进行研究,并取得了辉煌的成就.

二项式定理知识点大全(二项式定理的应用)