中考数学必刷压轴题(中考几何压轴题及答案)
中考数学必刷压轴题(中考几何压轴题及答案)

给我20道中考数学压轴题及解法.

31、(辽宁沈阳卷)如图,在平面直角坐标系中,直线 分别与 轴, 轴交于点 ,点 .

(1)以 为一边在第一象限内作等边 及 的外接圆 (用尺规作图,不要求写作法,但要保留作图痕迹);

(2)若 与 轴的另一个交点为点 ,求 , , , 四点的坐标;

(3)求经过 , , 三点的抛物线的解析式,并判断在抛物线上是否存在点 ,使 的面积等于 的面积?若存在,请直接写出所有符合条件的点 的坐标;若不存在,请说明理由.

[解] (1)如图,正确作出图形,保留作图痕迹

(2)由直线 ,求得点 的坐标为 ,点 的坐标为

在 中, ,

是等边三角形

点 的坐标为 ,连结

是等边三角形

直线 是 的切线

点 的坐标为

(3)设经过 , , 三点的抛物线的解析式是

把 代入上式得

抛物线的解析式是

存在点 ,使 的面积等于 的面积

点 的坐标分别为 , .

[点评]本题是一道综合性很强的压轴题,主要考查二次函数、一次函数、圆、几何作图等大量知识,第3小题是比较常规的结论存在性问题,运用方程思想和数形结合思想可解决。

32、(山东滨州卷)已知:抛物线 与 轴相交于 两点,且 .

(Ⅰ)若 ,且 为正整数,求抛物线 的解析式;

(Ⅱ)若 ,求 的取值范围;

(Ⅲ)试判断是否存在 ,使经过点 和点 的圆与 轴相切于点 ,若存在,求出 的值;若不存在,试说明理由;

(Ⅳ)若直线 过点 ,与(Ⅰ)中的抛物线 相交于 两点,且使 ,求直线 的解析式.

[解] (Ⅰ)解法一:由题意得, .

解得, .

为正整数, . .

解法二:由题意知,当 时, .

(以下同解法一)

解法三: ,

又 .

(以下同解法一.)

解法四:令 ,即 ,

(以下同解法三.)

(Ⅱ)解法一: .

,即 .

解得 .

的取值范围是 .

解法二:由题意知,当 时,

解得: .

的取值范围是 .

解法三:由(Ⅰ)的解法三、四知, .

的取值范围是 .

(Ⅲ)存在.

解法一:因为过 两点的圆与 轴相切于点 ,所以 两点在 轴的同侧,

由切割线定理知, ,

即 . ,

解法二:连接 .圆心所在直线 ,

设直线 与 轴交于点 ,圆心为 ,

则 .

在 中,

即 .

解得 .

(Ⅳ)设 ,则 .

过 分别向 轴引垂线,垂足分别为 .

则 .

所以由平行线分线段成比例定理知, .

因此, ,即 .

过 分别向 轴引垂线,垂足分别为 ,

则 .所以 . .

. .

,或 .

当 时,点 . 直线 过 ,

解得

当 时,点 . 直线 过 ,

解得

故所求直线 的解析式为: ,或 .

[点评]本题对学生有一定的能力要求,涉及了初中数学的大部分重点章节的重点知识,是一道选拔功能卓越的好题。

33、(山东济宁卷)如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B。P为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C。过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N。

(1)当点C在第一象限时,求证:△OPM≌△PCN;

(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m间的函数关系式,并写出自变量m的取值范围;

(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰直角三角形的点P的坐标;如果不可能,请说明理由。

[解] (1)∵OM∥BN,MN∥OB,∠AOB=900,

∴四边形OBNM为矩形。

∴MN=OB=1,∠PMO=∠CNP=900

∵ ,AO=BO=1,

∴AM=PM。

∴OM=OA-AM=1-AM,PN=MN-PM=1-PM

∴OM=PN

∵∠OPC=900

∴∠OPM+CPN=900

又∵∠OPM+∠POM=900

∴∠CPN=∠POM

∴△OPM≌△PCN

(2)∵AM=PM=APsin450=

∴NC=PM=

∴BN=OM=PN=1-

∴BC=BN-NC=1- - =

(3)△PBC可能为等腰三角形。

①当P与A重合时,PC=BC=1,此时P(0,1)

②当点C在第四象限,且PB=CB时,

有BN=PN=1-

∴BC=PB= PN= -m

∴NC=BN+BC=1- + -m

由⑵知:NC=PM=

∴1- + -m=

∴m=1

∴PM= = ,BN=1- =1-

∴P( ,1- )

∴使△PBC为等腰三角形的的点P的坐标为(0,1)或( ,1- )

[点评]此题的设计比较精巧,将几何知识放在坐标系中进行考查,第1题运用相似形等几何知识不难得证,第2小题需利用第1小问的结论来建立函数解析式,第3小题需分类讨论,不要漏解,运用方程思想可以得到答案。 34、(山西卷)如图,已知抛物线 与坐标轴的交点依次是 , , .

(1)求抛物线 关于原点对称的抛物线 的解析式;

(2)设抛物线 的顶点为 ,抛物线 与 轴分别交于 两点(点 在点 的左侧),顶点为 ,四边形 的面积为 .若点 ,点 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点 ,点 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点 与点 重合为止.求出四边形 的面积 与运动时间 之间的关系式,并写出自变量 的取值范围;

(3)当 为何值时,四边形 的面积 有最大值,并求出此最大值;

(4)在运动过程中,四边形 能否形成矩形?若能,求出此时 的值;若不能,请说明理由.

[解] (1)点 ,点 ,点 关于原点的对称点分别为 , , .

设抛物线 的解析式是

解得

所以所求抛物线的解析式是 .

(2)由(1)可计算得点 .

过点 作 ,垂足为 .

当运动到时刻 时, , .

根据中心对称的性质 ,所以四边形 是平行四边形.

所以 .

所以,四边形 的面积 .

因为运动至点 与点 重合为止,据题意可知 .

所以,所求关系式是 , 的取值范围是 .

(3) ,( ).

所以 时, 有最大值 .

提示:也可用顶点坐标公式来求.

(4)在运动过程中四边形 能形成矩形.

由(2)知四边形 是平行四边形,对角线是 ,所以当 时四边形 是矩形.

所以 .所以 .

所以 .解之得 (舍).

所以在运动过程中四边形 可以形成矩形,此时 .

[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

35、(四川课改卷)如图,在平面直角坐标系中,已知点 , ,以 为边在 轴下方作正方形 ,点 是线段 与正方形 的外接圆除点 以外的另一个交点,连结 与 相交于点 .

(1)求证: ;

(2)设直线 是 的边 的垂直平分线,且与 相交于点 .若 是 的外心,试求经过 三点的抛物线的解析表达式;

(3)在(2)的条件下,在抛物线上是否存在点 ,使该点关于直线 的对称点在 轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由.

[解] (1)在 和 中,

四边形 是正方形, .

又 ,

(2)由(1),有 , . 点 .

是 的外心, 点 在 的垂直平分线上.

点 也在 的垂直平分线上.

为等腰三角形, .

而 ,

设经过 三点的抛物线的解析表达式为 .

抛物线过点 , . .   ①

把点 ,点 的坐标代入①中,得

即   解得

抛物线的解析表达式为 . ②

(3)假定在抛物线上存在一点 ,使点 关于直线 的对称点 在 轴上.

是 的平分线,

轴上的点 关于直线 的对称点 必在直线 上,

即点 是抛物线与直线 的交点.

设直线 的解析表达式为 ,并设直线 与 轴交于点 ,则由 是等腰直角三角形.

. .

把点 ,点 代入 中,得

直线 的解析表达式为 .

设点 ,则有 .   ③

把③代入②,得 ,

,即 .

解得 或 .

当 时, ;

当 时, .

在抛物线上存在点 ,它们关于直线 的对称点都在 轴上.

[点评]本题有一定的难度,综合性也比较强,有一定的新意,第3小问有些难度,有一定的能力要求,解这种题时需冷静地分析题意,找到切入点不会很难。

36、(浙江卷)在平面直角坐标系xOy中,已知直线l1经过点A(-2,0)和点B(0, ),直线l2的函数表达式为 ,l1与l2相交于点P.⊙C是一个动圆,圆心C在直线l1上运动,设圆心C的横坐标是a.过点C作CM⊥x轴,垂足是点M.

(1) 填空:直线l1的函数表达式是 ,交点P的坐标是 ,∠FPB的度数是 ;

(2) 当⊙C和直线l2相切时,请证明点P到直线CM的距离等于⊙C的半径R,并写出R= 时a的值.

(3) 当⊙C和直线l2不相离时,已知⊙C的半径R= ,记四边形NMOB的面积为S(其中点N是直线CM与l2的交点).S是否存在最大值?若存在,求出这个最大值及此时a的值;若不存在,请说明理由.

[解] (1)

P(1, )

60�0�2

(2) 设⊙C和直线l2相切时的一种情况如图甲所示,D是切点,连接CD,则CD⊥PD.

过点P作CM的垂线PG,垂足为G,则Rt△CDP≌Rt△PGC (∠PCD=∠CPG=30�0�2,CP=PC), 所以PG=CD=R.

当点C在射线PA上,⊙C和直线l2相切时,同理可证.

取R= 时,a=1+R= ,

或a=-(R-1) .

(3) 当⊙C和直线l2不相离时,由(2)知,分两种情况讨论:

① 如图乙,当0≤a≤ 时,

当 时,(满足a≤ ),S有最大值.此时

(或 ).

② 当 ≤a<0时,显然⊙C和直线l2相切即 时,S最大.此时

综合以上①和②,当 或 时,存在S的最大值,其最大面积为

[点评]此题也较为新颖,符合新课标的理念,揭示了求最值的一般方法,本题的难度设置也较为合适,使同学们都能有发挥自己能力的空间。

37、(广东课改卷)如图所示,在平面直角坐标中,四边形OABC是等腰梯形,BC∥OA,OA=7,AB=4,∠ COA=60°,点P为x轴上的—个动点,点P不与点0、点A重合.连结CP,过点P作PD交AB于点D.

(1)求点B的坐标;

(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;

(3)当点P运动什么位置时,使得∠CPD=∠OAB,且 = ,求这时点P的坐标。

[解] (1)作BQ⊥x轴于Q.

∵ 四边形ABCD是等腰梯形,

∴∠BAQ=∠COA=60°

在RtΔBQA中,BA=4,

∴BQ=AB�6�1sin∠BAO=4×sin60°=

AQ=AB�6�1cos∠BAO=4×cos60°=2,

∴OQ=OA-AQ=7-2=5

∵点B在第一象限内,

∴点B的的坐标为(5, )

(2)若ΔOCP为等腰三角形,∵∠COP=60°,

此时ΔOCP为等边三角形或是顶角为120°的等腰三角形

若ΔOCP为等边三角形,OP=OC=PC=4,且点P在x轴的正半轴上,

∴点P的坐标为(4,0)

若ΔOCP是顶角为120°的等腰三角形,则点P在x轴的负半轴上,且OP=OC=4

∴点P的坐标为(-4,0)

∴点P的坐标为(4,0)或(-4,0)

(3)若∠CPD=∠OAB

∵∠CPA=∠OCP+∠COP

而∠OAB=∠COP=60°,

∴∠OCP=∠DPA

此时ΔOCP∽ΔADP

∴ ,

AD=AB-BD=4- =

AP=OA-OP=7-OP

得OP=1或6

∴点P坐标为(1,0)或(6,0).

[点评]本题是一道动态几何压轴题,对学生的分类思想作了重点的考查,是一道很不错区分度较好的压轴题。

38、(广东肇庆卷)已知两个关于 的二次函数 与 ;当 时, ;且二次函数 的图象的对称轴是直线 .

(1)求 的值;

(2)求函数 的表达式;

(3)在同一直角坐标系内,问函数 的图象与 的图象是否有交点?请说明理由.

[解] (1)由

得 .

又因为当 时, ,即 ,

解得 ,或 (舍去),故 的值为 .

(2)由 ,得 ,

所以函数 的图象的对称轴为 ,

于是,有 ,解得 ,

所以 .

(3)由 ,得函数 的图象为抛物线,其开口向下,顶点坐标为 ;

由 ,得函数 的图象为抛物线,其开口向上,顶点坐标为 ;

故在同一直角坐标系内,函数 的图象与 的图象没有交点.

[点评]本题是一道函数压轴题,主要考查了二次函数的性质、方程等知识,因该说难度比较恰当解第3小题时要学会画图,比较直观的看出它们是否有交点,在予以说明。

初三数学压轴题及答案

一、图形运动产生的面积问题

知识点睛

研究_基本_图形

分析运动状态:

①由起点、终点确定t的范围;

②对t分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置.

分段画图,选择适当方法表达面积.

二、精讲精练

已知,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上,沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点与点重合,点N到达点时运动终止),过点M、N分别作边的垂线,与△ABC的其他边交于P、Q两点,线段MN运动的时间为秒.

(1)线段MN在运动的过程中,为何值时,四边形MNQP恰为矩形?并求出该矩形的面积.

(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间变化的函数关系式,并写出自变量t的取值范围.

1题图 2题图

如图,等腰梯形ABCD中,AB∥CD,AB=, CD=,高CE=,对角线AC、BD交于点H.平行于线段BD的两条直线MN、RQ同时从点A出发,沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G,当直线RQ到达点C时,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的面积为,被直线RQ扫过的面积为,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为x秒.

(1)填空:∠AHB=____________;AC=_____________;

(2)若,求x.

如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动,当点Q到达点B时,点P、Q同时停止运动.过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ'R.设点Q的运动时间为t(s),△PQ'R与△PAR重叠部分的面积为S(cm2).

(1)t为何值时,点Q' 恰好落在AB上?

(2)求S与t的函数关系式,并写出t的取值范围.

(3)S能否为?若能,求出此时t的值;

若不能,请说明理由.

如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm,动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动.以AP为边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形APDE和梯形BCFQ重叠部分的面积为Scm2.

(1)当t=_____s时,点P与点Q重合;

(2)当t=_____s时,点D在QF上;

(3)当点P在Q,B两点之间(不包括Q,B两点)时,

求S与t之间的函数关系式.

如图,在平面直角坐标系中,已知点A(0,1)、D(-2,0),作直线AD并以线段AD为一边向上作正方形ABCD.

(1)填空:点B的坐标为________,点C的坐标为_________.

(2)若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.

如图,在平面直角坐标系xOy中,已知直线l1:y=x与直线l2:y=-x+6相交于点M,直线l2与x轴相交于点N.

(1)求M,N的坐标.

(2)已知矩形ABCD中,AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD与△OMN重叠部分的面积为S,移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时结束).求S与自变量t之间的函数关系式,并写出相应的自变量t的取值范围.

二、二次函数中的存在性问题

一、知识点睛

解决“二次函数中存在性问题”的基本步骤:

①画图分析.研究确定图形,先画图解决其中一种情形.

②分类讨论.先验证①的结果是否合理,再找其他分类,类比第一种情形求解.

③验证取舍.结合点的运动范围,画图或推理,对结果取舍.

二、精讲精练

如图,已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于A、B两点. 若以AB为直角边的△PAB与△OAB相似,请求出所有符合条件的点P的坐标.

抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.点P在抛物线上,直线PQ//BC交x轴于点Q,连接BQ.

(1)若含45°角的直角三角板如图所示放置,其中一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求直线BQ的函数解析式;

(2)若含30°角的直角三角板的一个顶点与点C重合,直角顶点D在直线BQ上(点D不与点Q重合),另一个顶点E在PQ上,求点P的坐标.

如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD=10,

OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.

(1)若抛物线经过A、B两点,求该抛物线的解析式:______________;

(2)若点M是直线AB上方抛物线上的一个动点,

作MN⊥x轴于点N.是否存在点M,使△AMN

与△ACD相似?若存在,求出点M的坐标;

若不存在,说明理由.

已知抛物线经过A、B、C三点,点P(1,k)在直线BC:y=x3上,若点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的四边形为平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.

抛物线与y轴交于点C,与直线y=x交于A(-2,-2)、B(2,2)两点.如图,线段MN在直线AB上移动,且,若点M的横坐标为m,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以P、M、Q、N为顶点的四边形否为平行四边形?若能,请求出m的值;若不能,请说明理由.

三、二次函数与几何综合

一、知识点睛

“二次函数与几何综合”思考流程:

整合信息时,下面两点可为我们提供便利:

①研究函数表达式.二次函数关注四点一线,一次函数关注k、b;

②)关键点坐标转线段长.找特殊图形、特殊位置关系,寻求边和角度信息.

二、精讲精练

如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.

(1)求抛物线的解析式.

(2)在抛物线的对称轴上是否存在点M,使|MA-MB|?

若存在,求出点M的坐标;若不存在,请说明理由.

如图,已知抛物线y=ax2-2ax-b(a>0)与x轴交于A、B两点,点A在点B的右侧,且点B的坐标为(-1,0),与y轴的负半轴交于点C,顶点为D.连接AC、CD,∠ACD=90°.

(1)求抛物线的解析式;

(2)点E在抛物线的对称轴上,点F在抛物线上,

且以B、A、F、E四点为顶点的四边形为平行四边形,求点的坐标.

如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.

(1)求该抛物线的解析式;

(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.设△PDE的周长为l,

点P的横坐标为x,求l关于x的函数关系式,并求出l的值.

已知,抛物线经过A(-1,0),C(2,)两点,

与x轴交于另一点B.

(1)求此抛物线的解析式;

(2)若抛物线的顶点为M,点P为线段OB上一动点 (不与点B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,MQ=,求y2与x的函数关系式,

并直接写出自变量x的取值范围.

已知抛物线的对称轴为直线,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,-3).

(1)求抛物线的解析式;

(2)若点P在抛物线上运动(点P异于点A),

①如图1,当△PBC的面积与△ABC的面积相等时,求点P的坐标;

②如图2,当∠PCB =∠BCA时,求直线CP的解析式.

四、中考数学压轴题专项训练

1.如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1),B(3,1).动点P从点O出发,沿x轴正方向以每秒1个单位长度的速度移动.过点P作PQ⊥OA,垂足为Q.设点P移动的时间为t秒(0

△OPQ与直角梯形OABC重叠部分的面积为S.

(1)求经过O,A,B三点的抛物线解析式.

(2)求S与t的函数关系式.

(3)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

2.如图,抛物线与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.

(1)求抛物线的解析式及点D的坐标.

(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标.

(3)过点P作直线CD的垂线,垂足为Q.若将△CPQ沿CP翻折,点Q的对应点为Q′,是否存在点P,使点Q′恰好在x轴上?若存在,求出此时点P的坐标;若不存在,请说明理由.

3.(11分)如图,已知直线与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.

(1)请直接写出C,D两点的坐标,并求出抛物线的解析式;

(2)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;

(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.

4.(11分)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于点D.

(1)求抛物线的解析式;

(2)点K为线段AB上一动点,过点K作x轴的垂线,交直

线CD于点H,交抛物线于点G,求线段HG长度的值;

(3)在直线l上取点M,在抛物线上取点N,使以A,C,M,

N为顶点的四边形是平行四边形,求点N的坐标.

5.(11分)如图,在平面直角坐标系中,直线与

抛物线交于A,B两点,点A在x轴上,点B的横坐标为-8.

(1)求抛物线的解析式.

(2)点P是直线AB上方的抛物线上一动点(不与点A,B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.

①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的值.

②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,

正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,

直接写出对应的点P的坐标.

6.(11分)如图1,点A为抛物线C1:的顶点,点B的坐标为

(1,0),直线AB交抛物线C1于另一点C.

(1)求点C的坐标;

(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于点F,交抛物线C1于点G,若FG:DE=4:3,求a的值;

(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为P,交x轴负半轴于点M,交射线AB于点N,NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.

附:参考答案

一、图形运动产生的面积问题

1. (1)当t=时,四边形MNQP恰为矩形.此时,该矩形的面积为平方厘米.

(2) 当0<t≤1时,;当1<t≤2时,;

当2<t<3时,

2.(1)90°;4 (2)x=2.

3.(1)当t=时,点Q' 恰好落在AB上.

(2)当0<t≤时,;当<t≤6时,

(3)由(2)问可得,当0<t≤时, ;

当<t≤6时,;

解得,或,此时.

4.(1)1 (2)(3)当1<t≤时,;

当<t<2时,.

5.(1)(﹣1,3),(﹣3,2) (2)当0<t≤时,;当<t≤1时,;

当1<t≤时,.

6.(1)M(4,2) N(6,0)(2)当0≤t≤1时,;

当1<t≤4时,;

当4<t≤5时,;

当5<t≤6时,;

当6<t≤7时,

二、二次函数中的存在性问题

1.解:由题意,设OA=m,则OB=2m;当∠BAP=90°时,

△BAP∽△AOB或△BAP∽△BOA;

若△BAP∽△AOB,如图1,

可知△PMA∽△AOB,相似比为2:1;则P1(5m,2m),

代入,可知,

若△BAP∽△BOA,如图2,

可知△PMA∽△AOB,相似比为1:2;则P2(2m,),

代入,可知,

当∠ABP=90°时,△ABP∽△AOB或△ABP∽△BOA;

若△ABP∽△AOB,如图3,

可知△PMB∽△BOA,相似比为2:1;则P3(4m,4m),

代入,可知,

若△ABP∽△BOA,如图4,

可知△PMB∽△BOA,相似比为1:2;则P4(m,),

代入,可知,

2.解:(1)由抛物线解析式可得B点坐标(1,3).

要求直线BQ的函数解析式,只需求得点Q坐标即可,即求CQ长度.

过点D作DG⊥x轴于点G,过点D作DF⊥QP于点F.

则可证△DCG≌△DEF.则DG=DF,∴矩形DGQF为正方形.

则∠DQG=45°,则△BCQ为等腰直角三角形.∴CQ=BC=3,此时,Q点坐标为(4,0)

可得BQ解析式为y=-x+4.

(2)要求P点坐标,只需求得点Q坐标,然后根据横坐标相同来求点P坐标即可.

而题目当中没有说明∠DCE=30°还是∠DCE=60°,所以分两种情况来讨论.

当∠DCE=30°时,

a)过点D作DH⊥x轴于点H,过点D作DK⊥QP于点K.

则可证△DCH∽△DEK.则,

在矩形DHQK中,DK=HQ,则.

在Rt△DHQ中,∠DQC=60°.则在Rt△BCQ中,∴CQ=,此时,Q点坐标为(1+,0)

则P点横坐标为1+.代入可得纵坐标.∴P(1+,).

b)又P、Q为动点,∴可能PQ在对称轴左侧,与上一种情形关于对称轴对称.

由对称性可得此时点P坐标为(1-,)

当∠DCE=60°时,

过点D作DM⊥x轴于点M,过点D作DN⊥QP于点N.

则可证△DCM∽△DEN.则,

在矩形DMQN中,DN=MQ,则.

在Rt△DMQ中,∠DQM=30°.则在Rt△BCQ中,

∴CQ=BC=,此时,Q点坐标为(1+,0)

则P点横坐标为1+.代入可得纵坐标.∴P(1+,).

b)又P、Q为动点,∴可能PQ在对称轴左侧,与上一种情形关于对称轴对称.

由对称性可得此时点P坐标为(1-,)

综上所述,P点坐标为(1+,),(1-,),(1+,)或(1-,).

3.解:(1)∵AB=BC=10,OB=8 ∴在Rt△OAB中,OA=6 ∴ A(6,0)

将A(6,0),B(0,-8)代入抛物线表达式,得,

(2)存在:

如果△AMN与△ACD相似,则或

设M(0

假设点M在x轴下方的抛物线上,如图1所示:

当时,,

即∴∴

如图2验证一下

当时,,即

∴(舍)

2)如果点M在x轴上方的抛物线上:

当时,,即 ∴ ∴M

此时, ∴ ∴△AMN∽△ACD ∴M满足要求

当时,,即 ∴m=10(舍)

综上M1,M2

4.解:满足条件坐标为:

思路分析:A、M、N、P四点中点A、点P为顶点,则AP可为平行四边形边、对角线;

(1)如图,当AP为平行四边形边时,平移AP;

∵点A、P纵坐标差为2 ∴点M、N纵坐标差为2;

∵点M的纵坐标为0 ∴点N的纵坐标为2或-2

①当点N的纵坐标为2时

解: 得

又∵点A、P横坐标差为2 ∴点M的坐标为: 、

②当点N的纵坐标为-2时

解: 得

又∵点A、P横坐标差为2 ∴点M的坐标为: 、

(2)当AP为平行四边形边对角线时; 设M5(m,0)

MN一定过AP的中点(0,-1)

则N5(-m,-2),N5在抛物线上 ∴

(负值不符合题意,舍去)

∴ ∴

综上所述:

符合条件点P的坐标为:

5.解:分析题意,可得:MP∥NQ,若以P、M、N、Q为顶点的四边形为平行四边形,只需MP=NQ即可。由题知:,,,

故只需表达MP、NQ即可.表达分下列四种情况:

①如图1,,,令PM=QN,

解得:(舍去),;

②如图2,,,令PM=QN,

解得:(舍去),;

③如图3,,,令PM=QN,

解得:,(舍去);

④如图4,,,令PM=QN,

解得:,(舍去);

综上,m的值为、、、.

三、二次函数与几何综合

解:(1)令x=0,则y=4, ∴点C的坐标为(0,4),

∵BC∥x轴,∴点B,C关于对称轴对称,

又∵抛物线y=ax2-5ax+4的对称轴是直线,即直线

∴点B的坐标为(5,4),∴AC=BC=5,

在Rt△ACO中,OA=,∴点A的坐标为A(,0),

∵抛物线y=ax2-5ax+4经过点A,∴9a+15a+4=0,解得, ∴抛物线的解析式是

(2)存在,M(,)

理由:∵B,C关于对称轴对称,∴MB=MC,∴;

∴当点M在直线AC上时,值,

设直线AC的解析式为,则,解得,∴

令,则,∴M(,)

2、解:(1)∵抛物线过点B(,0),

∴a+2a-b=0,∴b=3a,∴

令y=0,则x=或x=3,∴A(3,0),∴OA=3,

令x=0,则y=-3a,∴C(0,a),∴OC=3a

∵D为抛物线的顶点,∴D(1,4a)

过点D作DM⊥y轴于点M,则∠AOC=∠CMD=90°,

又∵∠ACD+∠MCD=∠AOC+∠1,∠ACD=∠AOC=90°

∴∠MCD=∠1 ,∴△AOC∽△CMD,∴,

∵D(1,4a),∴DM=1,OM=4a,∴CM=a

∴,∴,∵a>0,∴a=1

∴抛物线的解析式为:

(2)当AB为平行四边形的边时,则BA∥EF,并且EF= BA =4

由于对称轴为直线x=1,∴点E的横坐标为1,∴点F的横坐标为5或者3

将x=5代入得y=12,∴F(5,12).将x=-3代入得y=12,∴F(-3,12).

当AB为平行四边形的对角线时,点F即为点D, ∴F(1,4).

综上所述,点F的坐标为(5,12),(3,12)或(1,4).

3、解:(1)对于,当y=0,x=2;当x=8时,y=.

∴A点坐标为(2,0),B点坐标为

由抛物线经过A、B两点,得

解得

(2)设直线与y轴交于点M

当x=0时,y=. ∴OM=.

∵点A的坐标为(2,0),∴OA=2,∴AM=

∴OM:OA:AM=3:4:5.

由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOM ∽△PED.

∴DE:PE:PD=3:4:5

∵点P是直线AB上方的抛物线上一动点,

∴PD=

由题意知:

4、解:(1) ∵抛物线y1=ax22axb经过A(1,0),C(0,)两点,

∴,∴,∴抛物线的解析式为y1= x2x

(2)解法一:过点M作MN⊥AB交AB于点N,连接AM

由y1= x2x可知顶点M(1,2) ,A(1,0),B(3,0),N(1,0)

∴AB=4,MN=BN=AN=2,AM=MB=.

∴△AMN和△BMN为等腰直角三角形.

∵∠MPA+∠QPB=∠MPA +∠PMA=135°

∴∠QPB=∠PMA

又∵∠QBP=∠PAM=45°∴△QPB∽△PMA

∴ 将AM=,AP=x+1,BP=3-x,BQ=代入,

可得,即.

∵点P为线段OB上一动点 (不与点B重合)∴0x<3

则y2与x的函数关系式为y2=x2x(0x<3)

解法二:

过点M作MN⊥AB交AB于点N.

由y1= x2x易得M(1,2),N(1,0),A(1,0),B(3,0),

∴AB=4,MN=BN=2,MB=2,MBN=45.

根据勾股定理有BM 2BN 2=PM 2PN 2. ∴…①,

又MPQ=45=MBP,∴△MPQ∽△MBP,∴=y22

由、得y2=x2x.

∵0x<3,∴y2与x的函数关系式为y2=x2x(0x<3)

5、解:(1)由题意,得,解得

∴抛物线的解析式为.

(2)①令,解得 ∴B(3, 0)

则直线BC的解析式为 当点P在x轴上方时,如图1,

过点A作直线BC的平行线交抛物线于点P,∴设直线AP的解析式为,

∵直线AP过点A(1,0),∴直线AP的解析式为,交y轴于点.

解方程组,得 ∴点

当点P在x轴下方时,如图1,

根据点,可知需把直线BC向下平移2个单位,此时交抛物线于点,

得直线的解析式为,

解方程组,得

综上所述,点P的坐标为:

②过点B作AB的垂线,交CP于点F.如图2,∵

∴OB=OC,∴∠OCB=∠OBC=45° ∴∠CBF=∠ABC=45°

又∵∠PCB=∠BCA,BC=BC ∴△ACB≌△FCB

∴BF=BA=2,则点F(3,-2)又∵CP过点F,点C ∴直线CP的解析式为.

四、中考数学压轴题专项训练答案

1.(1);

(2);

(3)t=1或2.

2.(1),;

(2);

(3)存在,点P的坐标为.

3.(1),;

(2);

(3)15.

4.(1);

(2);

(3).

5.(1);

(2)①,当时,;

②.

6.(1);

(2); (3).

中考几何压轴题及答案

根据图形可以得到DE=EF,NE=BF,要证明这两个关系,只要证明△DNE≌△EBF即可.在第二个图形中,只要验证一下这个相等关系是否还成立就可以.解:(1)①DE=EF;

②NE=BF;

③∵四边形ABCD为正方形,

∴AD=AB,∠DAB=∠ABC=90°,

∵N,E分别为AD,AB中点,

∴AN=DN=

1/2AD,AE=EB=

1/2AB,

∴DN=BE,AN=AE,

∵∠DEF=90°,

∴∠AED+∠FEB=90°,

又∵∠ADE+∠AED=90°,

∴∠FEB=∠ADE,

又∵AN=AE,

∴∠ANE=∠AEN,

又∵∠A=90°,

∴∠ANE=45°,

∴∠DNE=180°-∠ANE=135°,

又∵∠CBM=90°,BF平分∠CBM,

∴∠CBF=45°,∠EBF=135°,

∴△DNE≌△EBF(ASA),

∴DE=EF,NE=BF.

(2)在DA上截取DN=EB(或截取AN=AE),

连接NE,则点N可使得NE=BF.

此时DE=EF.

证明方法同(1),证△DNE≌△EBF.点评:解决本题的关键就是求证△DNE≌△EBF.

免费下载这份资料?立即下载

给我20道中考数学压轴题及解法.

31、(辽宁沈阳卷)如图,在平面直角坐标系中,直线 分别与 轴, 轴交于点 ,点 .

(1)以 为一边在第一象限内作等边 及 的外接圆 (用尺规作图,不要求写作法,但要保留作图痕迹);

(2)若 与 轴的另一个交点为点 ,求 , , , 四点的坐标;

(3)求经过 , , 三点的抛物线的解析式,并判断在抛物线上是否存在点 ,使 的面积等于 的面积?若存在,请直接写出所有符合条件的点 的坐标;若不存在,请说明理由.

[解] (1)如图,正确作出图形,保留作图痕迹

(2)由直线 ,求得点 的坐标为 ,点 的坐标为

在 中, ,

是等边三角形

点 的坐标为 ,连结

是等边三角形

直线 是 的切线

点 的坐标为

(3)设经过 , , 三点的抛物线的解析式是

把 代入上式得

抛物线的解析式是

存在点 ,使 的面积等于 的面积

点 的坐标分别为 , .

[点评]本题是一道综合性很强的压轴题,主要考查二次函数、一次函数、圆、几何作图等大量知识,第3小题是比较常规的结论存在性问题,运用方程思想和数形结合思想可解决。

32、(山东滨州卷)已知:抛物线 与 轴相交于 两点,且 .

(Ⅰ)若 ,且 为正整数,求抛物线 的解析式;

(Ⅱ)若 ,求 的取值范围;

(Ⅲ)试判断是否存在 ,使经过点 和点 的圆与 轴相切于点 ,若存在,求出 的值;若不存在,试说明理由;

(Ⅳ)若直线 过点 ,与(Ⅰ)中的抛物线 相交于 两点,且使 ,求直线 的解析式.

[解] (Ⅰ)解法一:由题意得, .

解得, .

为正整数, . .

解法二:由题意知,当 时, .

(以下同解法一)

解法三: ,

又 .

(以下同解法一.)

解法四:令 ,即 ,

(以下同解法三.)

(Ⅱ)解法一: .

,即 .

解得 .

的取值范围是 .

解法二:由题意知,当 时,

解得: .

的取值范围是 .

解法三:由(Ⅰ)的解法三、四知, .

的取值范围是 .

(Ⅲ)存在.

解法一:因为过 两点的圆与 轴相切于点 ,所以 两点在 轴的同侧,

由切割线定理知, ,

即 . ,

解法二:连接 .圆心所在直线 ,

设直线 与 轴交于点 ,圆心为 ,

则 .

在 中,

即 .

解得 .

(Ⅳ)设 ,则 .

过 分别向 轴引垂线,垂足分别为 .

则 .

所以由平行线分线段成比例定理知, .

因此, ,即 .

过 分别向 轴引垂线,垂足分别为 ,

则 .所以 . .

. .

,或 .

当 时,点 . 直线 过 ,

解得

当 时,点 . 直线 过 ,

解得

故所求直线 的解析式为: ,或 .

[点评]本题对学生有一定的能力要求,涉及了初中数学的大部分重点章节的重点知识,是一道选拔功能卓越的好题。

33、(山东济宁卷)如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B。P为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C。过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N。

(1)当点C在第一象限时,求证:△OPM≌△PCN;

(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m间的函数关系式,并写出自变量m的取值范围;

(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰直角三角形的点P的坐标;如果不可能,请说明理由。

[解] (1)∵OM∥BN,MN∥OB,∠AOB=900,

∴四边形OBNM为矩形。

∴MN=OB=1,∠PMO=∠CNP=900

∵ ,AO=BO=1,

∴AM=PM。

∴OM=OA-AM=1-AM,PN=MN-PM=1-PM

∴OM=PN

∵∠OPC=900

∴∠OPM+CPN=900

又∵∠OPM+∠POM=900

∴∠CPN=∠POM

∴△OPM≌△PCN

(2)∵AM=PM=APsin450=

∴NC=PM=

∴BN=OM=PN=1-

∴BC=BN-NC=1- - =

(3)△PBC可能为等腰三角形。

①当P与A重合时,PC=BC=1,此时P(0,1)

②当点C在第四象限,且PB=CB时,

有BN=PN=1-

∴BC=PB= PN= -m

∴NC=BN+BC=1- + -m

由⑵知:NC=PM=

∴1- + -m=

∴m=1

∴PM= = ,BN=1- =1-

∴P( ,1- )

∴使△PBC为等腰三角形的的点P的坐标为(0,1)或( ,1- )

[点评]此题的设计比较精巧,将几何知识放在坐标系中进行考查,第1题运用相似形等几何知识不难得证,第2小题需利用第1小问的结论来建立函数解析式,第3小题需分类讨论,不要漏解,运用方程思想可以得到答案。 34、(山西卷)如图,已知抛物线 与坐标轴的交点依次是 , , .

(1)求抛物线 关于原点对称的抛物线 的解析式;

(2)设抛物线 的顶点为 ,抛物线 与 轴分别交于 两点(点 在点 的左侧),顶点为 ,四边形 的面积为 .若点 ,点 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点 ,点 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点 与点 重合为止.求出四边形 的面积 与运动时间 之间的关系式,并写出自变量 的取值范围;

(3)当 为何值时,四边形 的面积 有最大值,并求出此最大值;

(4)在运动过程中,四边形 能否形成矩形?若能,求出此时 的值;若不能,请说明理由.

[解] (1)点 ,点 ,点 关于原点的对称点分别为 , , .

设抛物线 的解析式是

解得

所以所求抛物线的解析式是 .

(2)由(1)可计算得点 .

过点 作 ,垂足为 .

当运动到时刻 时, , .

根据中心对称的性质 ,所以四边形 是平行四边形.

所以 .

所以,四边形 的面积 .

因为运动至点 与点 重合为止,据题意可知 .

所以,所求关系式是 , 的取值范围是 .

(3) ,( ).

所以 时, 有最大值 .

提示:也可用顶点坐标公式来求.

(4)在运动过程中四边形 能形成矩形.

由(2)知四边形 是平行四边形,对角线是 ,所以当 时四边形 是矩形.

所以 .所以 .

所以 .解之得 (舍).

所以在运动过程中四边形 可以形成矩形,此时 .

[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

35、(四川课改卷)如图,在平面直角坐标系中,已知点 , ,以 为边在 轴下方作正方形 ,点 是线段 与正方形 的外接圆除点 以外的另一个交点,连结 与 相交于点 .

(1)求证: ;

(2)设直线 是 的边 的垂直平分线,且与 相交于点 .若 是 的外心,试求经过 三点的抛物线的解析表达式;

(3)在(2)的条件下,在抛物线上是否存在点 ,使该点关于直线 的对称点在 轴上?若存在,求出所有这样的点的坐标;若不存在,请说明理由.

[解] (1)在 和 中,

四边形 是正方形, .

又 ,

(2)由(1),有 , . 点 .

是 的外心, 点 在 的垂直平分线上.

点 也在 的垂直平分线上.

为等腰三角形, .

而 ,

设经过 三点的抛物线的解析表达式为 .

抛物线过点 , . .   ①

把点 ,点 的坐标代入①中,得

即   解得

抛物线的解析表达式为 . ②

(3)假定在抛物线上存在一点 ,使点 关于直线 的对称点 在 轴上.

是 的平分线,

轴上的点 关于直线 的对称点 必在直线 上,

即点 是抛物线与直线 的交点.

设直线 的解析表达式为 ,并设直线 与 轴交于点 ,则由 是等腰直角三角形.

. .

把点 ,点 代入 中,得

直线 的解析表达式为 .

设点 ,则有 .   ③

把③代入②,得 ,

,即 .

解得 或 .

当 时, ;

当 时, .

在抛物线上存在点 ,它们关于直线 的对称点都在 轴上.

[点评]本题有一定的难度,综合性也比较强,有一定的新意,第3小问有些难度,有一定的能力要求,解这种题时需冷静地分析题意,找到切入点不会很难。

36、(浙江卷)在平面直角坐标系xOy中,已知直线l1经过点A(-2,0)和点B(0, ),直线l2的函数表达式为 ,l1与l2相交于点P.⊙C是一个动圆,圆心C在直线l1上运动,设圆心C的横坐标是a.过点C作CM⊥x轴,垂足是点M.

(1) 填空:直线l1的函数表达式是 ,交点P的坐标是 ,∠FPB的度数是 ;

(2) 当⊙C和直线l2相切时,请证明点P到直线CM的距离等于⊙C的半径R,并写出R= 时a的值.

(3) 当⊙C和直线l2不相离时,已知⊙C的半径R= ,记四边形NMOB的面积为S(其中点N是直线CM与l2的交点).S是否存在最大值?若存在,求出这个最大值及此时a的值;若不存在,请说明理由.

[解] (1)

P(1, )

60�0�2

(2) 设⊙C和直线l2相切时的一种情况如图甲所示,D是切点,连接CD,则CD⊥PD.

过点P作CM的垂线PG,垂足为G,则Rt△CDP≌Rt△PGC (∠PCD=∠CPG=30�0�2,CP=PC), 所以PG=CD=R.

当点C在射线PA上,⊙C和直线l2相切时,同理可证.

取R= 时,a=1+R= ,

或a=-(R-1) .

(3) 当⊙C和直线l2不相离时,由(2)知,分两种情况讨论:

① 如图乙,当0≤a≤ 时,

当 时,(满足a≤ ),S有最大值.此时

(或 ).

② 当 ≤a<0时,显然⊙C和直线l2相切即 时,S最大.此时

综合以上①和②,当 或 时,存在S的最大值,其最大面积为

[点评]此题也较为新颖,符合新课标的理念,揭示了求最值的一般方法,本题的难度设置也较为合适,使同学们都能有发挥自己能力的空间。

37、(广东课改卷)如图所示,在平面直角坐标中,四边形OABC是等腰梯形,BC∥OA,OA=7,AB=4,∠ COA=60°,点P为x轴上的—个动点,点P不与点0、点A重合.连结CP,过点P作PD交AB于点D.

(1)求点B的坐标;

(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;

(3)当点P运动什么位置时,使得∠CPD=∠OAB,且 = ,求这时点P的坐标。

[解] (1)作BQ⊥x轴于Q.

∵ 四边形ABCD是等腰梯形,

∴∠BAQ=∠COA=60°

在RtΔBQA中,BA=4,

∴BQ=AB�6�1sin∠BAO=4×sin60°=

AQ=AB�6�1cos∠BAO=4×cos60°=2,

∴OQ=OA-AQ=7-2=5

∵点B在第一象限内,

∴点B的的坐标为(5, )

(2)若ΔOCP为等腰三角形,∵∠COP=60°,

此时ΔOCP为等边三角形或是顶角为120°的等腰三角形

若ΔOCP为等边三角形,OP=OC=PC=4,且点P在x轴的正半轴上,

∴点P的坐标为(4,0)

若ΔOCP是顶角为120°的等腰三角形,则点P在x轴的负半轴上,且OP=OC=4

∴点P的坐标为(-4,0)

∴点P的坐标为(4,0)或(-4,0)

(3)若∠CPD=∠OAB

∵∠CPA=∠OCP+∠COP

而∠OAB=∠COP=60°,

∴∠OCP=∠DPA

此时ΔOCP∽ΔADP

∴ ,

AD=AB-BD=4- =

AP=OA-OP=7-OP

得OP=1或6

∴点P坐标为(1,0)或(6,0).

[点评]本题是一道动态几何压轴题,对学生的分类思想作了重点的考查,是一道很不错区分度较好的压轴题。

38、(广东肇庆卷)已知两个关于 的二次函数 与 ;当 时, ;且二次函数 的图象的对称轴是直线 .

(1)求 的值;

(2)求函数 的表达式;

(3)在同一直角坐标系内,问函数 的图象与 的图象是否有交点?请说明理由.

[解] (1)由

得 .

又因为当 时, ,即 ,

解得 ,或 (舍去),故 的值为 .

(2)由 ,得 ,

所以函数 的图象的对称轴为 ,

于是,有 ,解得 ,

所以 .

(3)由 ,得函数 的图象为抛物线,其开口向下,顶点坐标为 ;

由 ,得函数 的图象为抛物线,其开口向上,顶点坐标为 ;

故在同一直角坐标系内,函数 的图象与 的图象没有交点.

[点评]本题是一道函数压轴题,主要考查了二次函数的性质、方程等知识,因该说难度比较恰当解第3小题时要学会画图,比较直观的看出它们是否有交点,在予以说明。

初三数学压轴题及答案

一、图形运动产生的面积问题

知识点睛

研究_基本_图形

分析运动状态:

①由起点、终点确定t的范围;

②对t分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置.

分段画图,选择适当方法表达面积.

二、精讲精练

已知,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上,沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点与点重合,点N到达点时运动终止),过点M、N分别作边的垂线,与△ABC的其他边交于P、Q两点,线段MN运动的时间为秒.

(1)线段MN在运动的过程中,为何值时,四边形MNQP恰为矩形?并求出该矩形的面积.

(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间变化的函数关系式,并写出自变量t的取值范围.

1题图 2题图

如图,等腰梯形ABCD中,AB∥CD,AB=, CD=,高CE=,对角线AC、BD交于点H.平行于线段BD的两条直线MN、RQ同时从点A出发,沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G,当直线RQ到达点C时,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的面积为,被直线RQ扫过的面积为,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为x秒.

(1)填空:∠AHB=____________;AC=_____________;

(2)若,求x.

如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动,当点Q到达点B时,点P、Q同时停止运动.过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ'R.设点Q的运动时间为t(s),△PQ'R与△PAR重叠部分的面积为S(cm2).

(1)t为何值时,点Q' 恰好落在AB上?

(2)求S与t的函数关系式,并写出t的取值范围.

(3)S能否为?若能,求出此时t的值;

若不能,请说明理由.

如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm,动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动.以AP为边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形APDE和梯形BCFQ重叠部分的面积为Scm2.

(1)当t=_____s时,点P与点Q重合;

(2)当t=_____s时,点D在QF上;

(3)当点P在Q,B两点之间(不包括Q,B两点)时,

求S与t之间的函数关系式.

如图,在平面直角坐标系中,已知点A(0,1)、D(-2,0),作直线AD并以线段AD为一边向上作正方形ABCD.

(1)填空:点B的坐标为________,点C的坐标为_________.

(2)若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.

如图,在平面直角坐标系xOy中,已知直线l1:y=x与直线l2:y=-x+6相交于点M,直线l2与x轴相交于点N.

(1)求M,N的坐标.

(2)已知矩形ABCD中,AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD与△OMN重叠部分的面积为S,移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时结束).求S与自变量t之间的函数关系式,并写出相应的自变量t的取值范围.

二、二次函数中的存在性问题

一、知识点睛

解决“二次函数中存在性问题”的基本步骤:

①画图分析.研究确定图形,先画图解决其中一种情形.

②分类讨论.先验证①的结果是否合理,再找其他分类,类比第一种情形求解.

③验证取舍.结合点的运动范围,画图或推理,对结果取舍.

二、精讲精练

如图,已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于A、B两点. 若以AB为直角边的△PAB与△OAB相似,请求出所有符合条件的点P的坐标.

抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.点P在抛物线上,直线PQ//BC交x轴于点Q,连接BQ.

(1)若含45°角的直角三角板如图所示放置,其中一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求直线BQ的函数解析式;

(2)若含30°角的直角三角板的一个顶点与点C重合,直角顶点D在直线BQ上(点D不与点Q重合),另一个顶点E在PQ上,求点P的坐标.

如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD=10,

OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.

(1)若抛物线经过A、B两点,求该抛物线的解析式:______________;

(2)若点M是直线AB上方抛物线上的一个动点,

作MN⊥x轴于点N.是否存在点M,使△AMN

与△ACD相似?若存在,求出点M的坐标;

若不存在,说明理由.

已知抛物线经过A、B、C三点,点P(1,k)在直线BC:y=x3上,若点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的四边形为平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.

抛物线与y轴交于点C,与直线y=x交于A(-2,-2)、B(2,2)两点.如图,线段MN在直线AB上移动,且,若点M的横坐标为m,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以P、M、Q、N为顶点的四边形否为平行四边形?若能,请求出m的值;若不能,请说明理由.

三、二次函数与几何综合

一、知识点睛

“二次函数与几何综合”思考流程:

整合信息时,下面两点可为我们提供便利:

①研究函数表达式.二次函数关注四点一线,一次函数关注k、b;

②)关键点坐标转线段长.找特殊图形、特殊位置关系,寻求边和角度信息.

二、精讲精练

如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.

(1)求抛物线的解析式.

(2)在抛物线的对称轴上是否存在点M,使|MA-MB|?

若存在,求出点M的坐标;若不存在,请说明理由.

如图,已知抛物线y=ax2-2ax-b(a>0)与x轴交于A、B两点,点A在点B的右侧,且点B的坐标为(-1,0),与y轴的负半轴交于点C,顶点为D.连接AC、CD,∠ACD=90°.

(1)求抛物线的解析式;

(2)点E在抛物线的对称轴上,点F在抛物线上,

且以B、A、F、E四点为顶点的四边形为平行四边形,求点的坐标.

如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.

(1)求该抛物线的解析式;

(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.设△PDE的周长为l,

点P的横坐标为x,求l关于x的函数关系式,并求出l的值.

已知,抛物线经过A(-1,0),C(2,)两点,

与x轴交于另一点B.

(1)求此抛物线的解析式;

(2)若抛物线的顶点为M,点P为线段OB上一动点 (不与点B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,MQ=,求y2与x的函数关系式,

并直接写出自变量x的取值范围.

已知抛物线的对称轴为直线,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,-3).

(1)求抛物线的解析式;

(2)若点P在抛物线上运动(点P异于点A),

①如图1,当△PBC的面积与△ABC的面积相等时,求点P的坐标;

②如图2,当∠PCB =∠BCA时,求直线CP的解析式.

四、中考数学压轴题专项训练

1.如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1),B(3,1).动点P从点O出发,沿x轴正方向以每秒1个单位长度的速度移动.过点P作PQ⊥OA,垂足为Q.设点P移动的时间为t秒(0

△OPQ与直角梯形OABC重叠部分的面积为S.

(1)求经过O,A,B三点的抛物线解析式.

(2)求S与t的函数关系式.

(3)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

2.如图,抛物线与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.

(1)求抛物线的解析式及点D的坐标.

(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标.

(3)过点P作直线CD的垂线,垂足为Q.若将△CPQ沿CP翻折,点Q的对应点为Q′,是否存在点P,使点Q′恰好在x轴上?若存在,求出此时点P的坐标;若不存在,请说明理由.

3.(11分)如图,已知直线与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.

(1)请直接写出C,D两点的坐标,并求出抛物线的解析式;

(2)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;

(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.

4.(11分)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于点D.

(1)求抛物线的解析式;

(2)点K为线段AB上一动点,过点K作x轴的垂线,交直

线CD于点H,交抛物线于点G,求线段HG长度的值;

(3)在直线l上取点M,在抛物线上取点N,使以A,C,M,

N为顶点的四边形是平行四边形,求点N的坐标.

5.(11分)如图,在平面直角坐标系中,直线与

抛物线交于A,B两点,点A在x轴上,点B的横坐标为-8.

(1)求抛物线的解析式.

(2)点P是直线AB上方的抛物线上一动点(不与点A,B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.

①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的值.

②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,

正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,

直接写出对应的点P的坐标.

6.(11分)如图1,点A为抛物线C1:的顶点,点B的坐标为

(1,0),直线AB交抛物线C1于另一点C.

(1)求点C的坐标;

(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于点F,交抛物线C1于点G,若FG:DE=4:3,求a的值;

(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为P,交x轴负半轴于点M,交射线AB于点N,NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.

附:参考答案

一、图形运动产生的面积问题

1. (1)当t=时,四边形MNQP恰为矩形.此时,该矩形的面积为平方厘米.

(2) 当0<t≤1时,;当1<t≤2时,;

当2<t<3时,

2.(1)90°;4 (2)x=2.

3.(1)当t=时,点Q' 恰好落在AB上.

(2)当0<t≤时,;当<t≤6时,

(3)由(2)问可得,当0<t≤时, ;

当<t≤6时,;

解得,或,此时.

4.(1)1 (2)(3)当1<t≤时,;

当<t<2时,.

5.(1)(﹣1,3),(﹣3,2) (2)当0<t≤时,;当<t≤1时,;

当1<t≤时,.

6.(1)M(4,2) N(6,0)(2)当0≤t≤1时,;

当1<t≤4时,;

当4<t≤5时,;

当5<t≤6时,;

当6<t≤7时,

二、二次函数中的存在性问题

1.解:由题意,设OA=m,则OB=2m;当∠BAP=90°时,

△BAP∽△AOB或△BAP∽△BOA;

若△BAP∽△AOB,如图1,

可知△PMA∽△AOB,相似比为2:1;则P1(5m,2m),

代入,可知,

若△BAP∽△BOA,如图2,

可知△PMA∽△AOB,相似比为1:2;则P2(2m,),

代入,可知,

当∠ABP=90°时,△ABP∽△AOB或△ABP∽△BOA;

若△ABP∽△AOB,如图3,

可知△PMB∽△BOA,相似比为2:1;则P3(4m,4m),

代入,可知,

若△ABP∽△BOA,如图4,

可知△PMB∽△BOA,相似比为1:2;则P4(m,),

代入,可知,

2.解:(1)由抛物线解析式可得B点坐标(1,3).

要求直线BQ的函数解析式,只需求得点Q坐标即可,即求CQ长度.

过点D作DG⊥x轴于点G,过点D作DF⊥QP于点F.

则可证△DCG≌△DEF.则DG=DF,∴矩形DGQF为正方形.

则∠DQG=45°,则△BCQ为等腰直角三角形.∴CQ=BC=3,此时,Q点坐标为(4,0)

可得BQ解析式为y=-x+4.

(2)要求P点坐标,只需求得点Q坐标,然后根据横坐标相同来求点P坐标即可.

而题目当中没有说明∠DCE=30°还是∠DCE=60°,所以分两种情况来讨论.

当∠DCE=30°时,

a)过点D作DH⊥x轴于点H,过点D作DK⊥QP于点K.

则可证△DCH∽△DEK.则,

在矩形DHQK中,DK=HQ,则.

在Rt△DHQ中,∠DQC=60°.则在Rt△BCQ中,∴CQ=,此时,Q点坐标为(1+,0)

则P点横坐标为1+.代入可得纵坐标.∴P(1+,).

b)又P、Q为动点,∴可能PQ在对称轴左侧,与上一种情形关于对称轴对称.

由对称性可得此时点P坐标为(1-,)

当∠DCE=60°时,

过点D作DM⊥x轴于点M,过点D作DN⊥QP于点N.

则可证△DCM∽△DEN.则,

在矩形DMQN中,DN=MQ,则.

在Rt△DMQ中,∠DQM=30°.则在Rt△BCQ中,

∴CQ=BC=,此时,Q点坐标为(1+,0)

则P点横坐标为1+.代入可得纵坐标.∴P(1+,).

b)又P、Q为动点,∴可能PQ在对称轴左侧,与上一种情形关于对称轴对称.

由对称性可得此时点P坐标为(1-,)

综上所述,P点坐标为(1+,),(1-,),(1+,)或(1-,).

3.解:(1)∵AB=BC=10,OB=8 ∴在Rt△OAB中,OA=6 ∴ A(6,0)

将A(6,0),B(0,-8)代入抛物线表达式,得,

(2)存在:

如果△AMN与△ACD相似,则或

设M(0

假设点M在x轴下方的抛物线上,如图1所示:

当时,,

即∴∴

如图2验证一下

当时,,即

∴(舍)

2)如果点M在x轴上方的抛物线上:

当时,,即 ∴ ∴M

此时, ∴ ∴△AMN∽△ACD ∴M满足要求

当时,,即 ∴m=10(舍)

综上M1,M2

4.解:满足条件坐标为:

思路分析:A、M、N、P四点中点A、点P为顶点,则AP可为平行四边形边、对角线;

(1)如图,当AP为平行四边形边时,平移AP;

∵点A、P纵坐标差为2 ∴点M、N纵坐标差为2;

∵点M的纵坐标为0 ∴点N的纵坐标为2或-2

①当点N的纵坐标为2时

解: 得

又∵点A、P横坐标差为2 ∴点M的坐标为: 、

②当点N的纵坐标为-2时

解: 得

又∵点A、P横坐标差为2 ∴点M的坐标为: 、

(2)当AP为平行四边形边对角线时; 设M5(m,0)

MN一定过AP的中点(0,-1)

则N5(-m,-2),N5在抛物线上 ∴

(负值不符合题意,舍去)

∴ ∴

综上所述:

符合条件点P的坐标为:

5.解:分析题意,可得:MP∥NQ,若以P、M、N、Q为顶点的四边形为平行四边形,只需MP=NQ即可。由题知:,,,

故只需表达MP、NQ即可.表达分下列四种情况:

①如图1,,,令PM=QN,

解得:(舍去),;

②如图2,,,令PM=QN,

解得:(舍去),;

③如图3,,,令PM=QN,

解得:,(舍去);

④如图4,,,令PM=QN,

解得:,(舍去);

综上,m的值为、、、.

三、二次函数与几何综合

解:(1)令x=0,则y=4, ∴点C的坐标为(0,4),

∵BC∥x轴,∴点B,C关于对称轴对称,

又∵抛物线y=ax2-5ax+4的对称轴是直线,即直线

∴点B的坐标为(5,4),∴AC=BC=5,

在Rt△ACO中,OA=,∴点A的坐标为A(,0),

∵抛物线y=ax2-5ax+4经过点A,∴9a+15a+4=0,解得, ∴抛物线的解析式是

(2)存在,M(,)

理由:∵B,C关于对称轴对称,∴MB=MC,∴;

∴当点M在直线AC上时,值,

设直线AC的解析式为,则,解得,∴

令,则,∴M(,)

2、解:(1)∵抛物线过点B(,0),

∴a+2a-b=0,∴b=3a,∴

令y=0,则x=或x=3,∴A(3,0),∴OA=3,

令x=0,则y=-3a,∴C(0,a),∴OC=3a

∵D为抛物线的顶点,∴D(1,4a)

过点D作DM⊥y轴于点M,则∠AOC=∠CMD=90°,

又∵∠ACD+∠MCD=∠AOC+∠1,∠ACD=∠AOC=90°

∴∠MCD=∠1 ,∴△AOC∽△CMD,∴,

∵D(1,4a),∴DM=1,OM=4a,∴CM=a

∴,∴,∵a>0,∴a=1

∴抛物线的解析式为:

(2)当AB为平行四边形的边时,则BA∥EF,并且EF= BA =4

由于对称轴为直线x=1,∴点E的横坐标为1,∴点F的横坐标为5或者3

将x=5代入得y=12,∴F(5,12).将x=-3代入得y=12,∴F(-3,12).

当AB为平行四边形的对角线时,点F即为点D, ∴F(1,4).

综上所述,点F的坐标为(5,12),(3,12)或(1,4).

3、解:(1)对于,当y=0,x=2;当x=8时,y=.

∴A点坐标为(2,0),B点坐标为

由抛物线经过A、B两点,得

解得

(2)设直线与y轴交于点M

当x=0时,y=. ∴OM=.

∵点A的坐标为(2,0),∴OA=2,∴AM=

∴OM:OA:AM=3:4:5.

由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOM ∽△PED.

∴DE:PE:PD=3:4:5

∵点P是直线AB上方的抛物线上一动点,

∴PD=

由题意知:

4、解:(1) ∵抛物线y1=ax22axb经过A(1,0),C(0,)两点,

∴,∴,∴抛物线的解析式为y1= x2x

(2)解法一:过点M作MN⊥AB交AB于点N,连接AM

由y1= x2x可知顶点M(1,2) ,A(1,0),B(3,0),N(1,0)

∴AB=4,MN=BN=AN=2,AM=MB=.

∴△AMN和△BMN为等腰直角三角形.

∵∠MPA+∠QPB=∠MPA +∠PMA=135°

∴∠QPB=∠PMA

又∵∠QBP=∠PAM=45°∴△QPB∽△PMA

∴ 将AM=,AP=x+1,BP=3-x,BQ=代入,

可得,即.

∵点P为线段OB上一动点 (不与点B重合)∴0x<3

则y2与x的函数关系式为y2=x2x(0x<3)

解法二:

过点M作MN⊥AB交AB于点N.

由y1= x2x易得M(1,2),N(1,0),A(1,0),B(3,0),

∴AB=4,MN=BN=2,MB=2,MBN=45.

根据勾股定理有BM 2BN 2=PM 2PN 2. ∴…①,

又MPQ=45=MBP,∴△MPQ∽△MBP,∴=y22

由、得y2=x2x.

∵0x<3,∴y2与x的函数关系式为y2=x2x(0x<3)

5、解:(1)由题意,得,解得

∴抛物线的解析式为.

(2)①令,解得 ∴B(3, 0)

则直线BC的解析式为 当点P在x轴上方时,如图1,

过点A作直线BC的平行线交抛物线于点P,∴设直线AP的解析式为,

∵直线AP过点A(1,0),∴直线AP的解析式为,交y轴于点.

解方程组,得 ∴点

当点P在x轴下方时,如图1,

根据点,可知需把直线BC向下平移2个单位,此时交抛物线于点,

得直线的解析式为,

解方程组,得

综上所述,点P的坐标为:

②过点B作AB的垂线,交CP于点F.如图2,∵

∴OB=OC,∴∠OCB=∠OBC=45° ∴∠CBF=∠ABC=45°

又∵∠PCB=∠BCA,BC=BC ∴△ACB≌△FCB

∴BF=BA=2,则点F(3,-2)又∵CP过点F,点C ∴直线CP的解析式为.

四、中考数学压轴题专项训练答案

1.(1);

(2);

(3)t=1或2.

2.(1),;

(2);

(3)存在,点P的坐标为.

3.(1),;

(2);

(3)15.

4.(1);

(2);

(3).

5.(1);

(2)①,当时,;

②.

6.(1);

(2); (3).

中考几何压轴题及答案

根据图形可以得到DE=EF,NE=BF,要证明这两个关系,只要证明△DNE≌△EBF即可.在第二个图形中,只要验证一下这个相等关系是否还成立就可以.解:(1)①DE=EF;

②NE=BF;

③∵四边形ABCD为正方形,

∴AD=AB,∠DAB=∠ABC=90°,

∵N,E分别为AD,AB中点,

∴AN=DN=

1/2AD,AE=EB=

1/2AB,

∴DN=BE,AN=AE,

∵∠DEF=90°,

∴∠AED+∠FEB=90°,

又∵∠ADE+∠AED=90°,

∴∠FEB=∠ADE,

又∵AN=AE,

∴∠ANE=∠AEN,

又∵∠A=90°,

∴∠ANE=45°,

∴∠DNE=180°-∠ANE=135°,

又∵∠CBM=90°,BF平分∠CBM,

∴∠CBF=45°,∠EBF=135°,

∴△DNE≌△EBF(ASA),

∴DE=EF,NE=BF.

(2)在DA上截取DN=EB(或截取AN=AE),

连接NE,则点N可使得NE=BF.

此时DE=EF.

证明方法同(1),证△DNE≌△EBF.点评:解决本题的关键就是求证△DNE≌△EBF.

中考数学必刷压轴题(中考几何压轴题及答案)