一元二次方程例题(配方法解一元二次方程例题)
一元二次方程例题(配方法解一元二次方程例题)

三种解法解一道一元二次方程计算题的例题

例1.解方程(1)(3x+1)^2;=7 (2)9x^2;-24x+16=11   分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2;,右边=11>0,所以此方程也可用直接开平方法解。   (1)解:(3x+1)^2=7   ∴(3x+1)^2=7   ∴3x+1=±√7(注意不要丢解符号)   ∴x= ﹙﹣1±√7﹚/3   ∴原方程的解为x?=﹙√7﹣1﹚/3,x?=﹙﹣√7-1﹚/3   (2)解: 9x^2-24x+16=11   ∴(3x-4)^2=11   ∴3x-4=±√11   ∴x=﹙ 4±√11﹚/3   ∴原方程的解为x?=﹙4﹢√11﹚/3,x?= ﹙4﹣√11﹚/3   2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)   先将常数c移到方程右边:ax^2+bx=-c   将二次项系数化为1:x^2+b/ax=- c/a   方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2;   方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²   当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²   ∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式)   例2.用配方法解方程 3x²-4x-2=0   解:将常数项移到方程右边 3x²-4x=2   将二次项系数化为1:x²-﹙4/3﹚x= ?   方程两边都加上一次项系数一半的平方:x²-﹙4/3﹚x+( 4/6)²=? +(4/6 )²   配方:(x-4/6)²= ? +(4/6 )²   直接开平方得:x-4/6=± √[? +(4/6 )² ]   ∴x= 4/6± √[? +(4/6 )² ]   ∴原方程的解为x?=4/6﹢√﹙10/6﹚,x?=4/6﹣√﹙10/6﹚ .   3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) , (b²-4ac≥0)就可得到方程的根。   例3.用公式法解方程 2x²-8x=-5   解:将方程化为一般形式:2x²-8x+5=0   ∴a=2, b=-8, c=5   b²-4ac=(-8)²-4×2×5=64-40=24>0   ∴x=[(-b±√(b²-4ac)]/(2a)   ∴原方程的解为x?=,x?= .   4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。   例4.用因式分解法解下列方程:   (1) (x+3)(x-6)=-8 (2) 2x²+3x=0   (3) 6x²+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)   (1)解:(x+3)(x-6)=-8 化简整理得   x2-3x-10=0 (方程左边为二次三项式,右边为零)   (x-5)(x+2)=0 (方程左边分解因式)   ∴x-5=0或x+2=0 (转化成两个一元一次方程)   ∴x1=5,x2=-2是原方程的解。   (2)解:2x2+3x=0   x(2x+3)=0 (用提公因式法将方程左边分解因式)   ∴x=0或2x+3=0 (转化成两个一元一次方程)   ∴x1=0,x2=-是原方程的解。   注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。   (3)解:6x2+5x-50=0   (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)   ∴2x-5=0或3x+10=0   ∴x1=, x2=- 是原方程的解。   (4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)   (x-2)(x-2 )=0   ∴x1=2 ,x2=2是原方程的解。 例1.解方程(1)(3x+1)^2;=7 (2)9x^2;-24x+16=11

分析:(1)此方程显然用直接开平方法好做,

(2)方程左边是完全平方式(3x-4)^2;,右边=11>0,所以此方程也可用直接开平方法解。   (1)解:(3x+1)^2=7

∴(3x+1)^2=7

∴3x+1=±√7(注意不要丢解符号)

∴x= ﹙﹣1±√7﹚/3

∴原方程的解为x?=﹙√7﹣1﹚/3,x?=﹙﹣√7-1﹚/3

(2)解: 9x^2-24x+16=11

∴(3x-4)^2=11   ∴3x-4=±√11

∴x=﹙ 4±√11﹚/3   ∴原方程的解为x?=﹙4﹢√11﹚/3,x?= ﹙4﹣√11﹚/3

2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)

先将常数c移到方程右边:ax^2+bx=-c

将二次项系数化为1:x^2+b/ax=- c/a

方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2;

方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²

当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²

∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式)

例2.用配方法解方程 3x²-4x-2=0

解:将常数项移到方程右边 3x²-4x=2

将二次项系数化为1:x²-﹙4/3﹚x= ?

方程两边都加上一次项系数一半的平方:x²-﹙4/3﹚x+( 4/6)²=? +(4/6 )²

配方:(x-4/6)²= ? +(4/6 )²

直接开平方得:x-4/6=± √[? +(4/6 )² ]

∴x= 4/6± √[? +(4/6 )² ]

∴原方程的解为x?=4/6﹢√﹙10/6﹚,x?=4/6﹣√﹙10/6﹚ .

3.公式法:

例3.用公式法解方程 2x²-8x=-5

解:将方程化为一般形式:2x²-8x+5=0

∴a=2, b=-8, c=5

b²-4ac=(-8)²-4×2×5=64-40=24>0

∴x=[(-b±√(b²-4ac)]/(2a)

∴原方程的解为x?=,x?= .

4.因式分解法:

例4.用因式分解法解下列方程:

(1) (x+3)(x-6)=-8 (2) 2x²+3x=0   (3) 6x²+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学) (1)解:(x+3)(x-6)=-8 化简整理得

x2-3x-10=0 (方程左边为二次三项式,右边为零)

(x-5)(x+2)=0 (方程左边分解因式)

∴x-5=0或x+2=0 (转化成两个一元一次方程)

∴x1=5,x2=-2是原方程的解。

(2)解:2x2+3x=0

x(2x+3)=0 (用提公因式法将方程左边分解因式)

∴x=0或2x+3=0 (转化成两个一元一次方程)

∴x1=0,x2=-是原方程的解。

注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。

(3)解:6x2+5x-50=0

(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)

∴2x-5=0或3x+10=0

∴x1=, x2=- 是原方程的解。

(4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)

(x-2)(x-2 )=0

∴x1=2 ,x2=2是原方程的解。

一元二次方程怎么解 讲解一下来个例题

以x的平方+4x=5为例

第一种方法使用配方法

等号两边同时加上四 那呢就是x的平房+4x+4=9

即(x+2)的平方=9=3的平方

所以X+2 =3或x+2=-3

所以x=1或者x=-5

第二种是用公式法

此方程的标准形式为 x的平方+4x-5=0

所以二次项系数a=1

一次项系数b=4

常数项c=-5

所以b的平方—4ac=16—(4乘以1乘以-5)=36

因为36大于0 所以此方程有实数解

由求根公式得 x=[-b±√(b^2-4ac)]/(2a)

再将各项系数代入 就可以求得x的两个值了

配方法解一元二次方程例题

1、例题:x²-2x=0

变化:x²-2x+1=1

变化:(x-1) ²=1

变化:x-1=±1

解为:x=2 或 x=0

2、例题:x²-2x=4

变化:x²-2x+1=5

变化:(x-1) ²=5

变化:x-1=±√5

解为:x=1+√5 或 x=1-√5

3、例题:2x²-4x=4

变化:x²-2x+1=3

变化:(x-1) ²=3

变化:x-1=±√3

解为:x=1+√3 或 x=1-√3

4、例题:x²-4x=-4

变化:x²-4x+4=0 用配方法解一元二次方程练习题

1.用适当的数填空:

①、x2+6x+ =(x+ )2;

②、x2-5x+ =(x- )2;

③、x2+ x+ =(x+ )2;

④、x2-9x+ =(x- )2

2.将二次三项式2x2-3x-5进行配方,其结果为_________.

3.已知4x2-ax+1可变为(2x-b)2的形式,则ab=_______.

4.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b的形式为_______,所以方程的根为_________.

5.若x2+6x+m2是一个完全平方式,则m的值是( )

A.3 B.-3 C.±3 D.以上都不对

6.用配方法将二次三项式a2-4a+5变形,结果是( )

A.(a-2)2+1 B.(a+2)2-1 C.(a+2)2+1 D.(a-2)2-1

7.把方程x+3=4x配方,得( )

A.(x-2)2=7 B.(x+2)2=21 C.(x-2)2=1 D.(x+2)2=2

8.用配方法解方程x2+4x=10的根为( )

A.2± B.-2± C.-2+ D.2-

9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值( )

A.总不小于2 B.总不小于7

C.可为任何实数 D.可能为负数

10.用配方法解下列方程:

(1)3x2-5x=2. (2)x2+8x=9

(3)x2+12x-15=0 (4) x2-x-4=0

11.用配方法求解下列问题

(1)求2x2-7x+2的最小值 ;

(2)求-3x2+5x+1的最大值。

一元二次方程例题带答案 30道

一、增长率问题

例1 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.

解 设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,

即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).

答 这两个月的平均增长率是10%.

说明 这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n.

二、商品定价

例2 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?

解 根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,

解这个方程,得a1=25,a2=31.

因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.

所以350-10a=350-10×25=100(件).

答 需要进货100件,每件商品应定价25元.

说明 商品的定价问题是商品交易中的重要问题,也是各种考试的热点.

三、储蓄问题

例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)

解 设第一次存款时的年利率为x.

则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.

解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.

答 第一次存款的年利率约是2.04%.

说明 这里是按教育储蓄求解的,应注意不计利息税.

四、趣味问题

例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?

解 设渠道的深度为xm,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.

则根据题意,得(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0.

解这个方程,得x1=-1.8(舍去),x2=1.

所以x+1.4+0.1=1+1.4+0.1=2.5.

答 渠道的上口宽2.5m,渠深1m.

说明 求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.

五、古诗问题

例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄).

大江东去浪淘尽,千古风流数人物;

而立之年督东吴,早逝英年两位数;

十位恰小个位三,个位平方与寿符;

哪位学子算得快,多少年华属周瑜?

解 设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3.

则根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x=6.

当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;

当x=6时,周瑜年龄为36岁,完全符合题意.

答 周瑜去世的年龄为36岁.

说明 本题虽然是一道古诗问题,但它涉及到数字和年龄问题,通过求解同学们应从中认真口味.

六、象棋比赛

例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选 手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.

解 设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为n(n-1)局.由于每局共计2分,所以全部选手得分总共为n(n-1)分.显然(n-1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44(舍去).

答 参加比赛的选手共有45人.

说明 类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解.

七、情景对话

例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准.

某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?

解 设该单位这次共有x名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.

则根据题意,得[1000-20(x-25)]x=27000.

整理,得x2-75x+1350=0,解这个方程,得x1=45,x2=30.

当x=45时,1000-20(x-25)=600<700,故舍去x1;

当x2=30时,1000-20(x-25)=900>700,符合题意.

答:该单位这次共有30名员工去天水湾风景区旅游.

说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论.

八、等积变形

例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)

(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路.

(2)设计方案2(如图3)花园中每个角的扇形都相同.

以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.

解 都能.(1)设小路宽为x,则18x+16x-x2=×18×15,即x2-34x+180=0,

解这个方程,得x=,即x≈6.6.

(2)设扇形半径为r,则3.14r2=×18×15,即r2≈57.32,所以r≈7.6.

说明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变;或形变积也变,但重量不变,等等.

九、动态几何问题

例9 如图4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.

(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?

(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.

解 因为∠C=90°,所以AB===10(cm).

(1)设xs后,可使△PCQ的面积为8cm2,所以 AP=xcm,PC=(6-x)cm,CQ=2xcm.

则根据题意,得·(6-x)·2x=8.整理,得x2-6x+8=0,解这个方程,得x1=2,x2=4.

所以P、Q同时出发,2s或4s后可使△PCQ的面积为8cm2.

(2)设点P出发x秒后,△PCQ的面积等于△ABC面积的一半.

则根据题意,得(6-x)·2x=××6×8.整理,得x2-6x+12=0.

由于此方程没有实数根,所以不存在使△PCQ的面积等于ABC面积一半的时刻.

说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度×时间.

十、梯子问题

例10 一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.

(1)若梯子的顶端下滑1m,求梯子的底端水平滑动多少米?

(2)若梯子的底端水平向外滑动1m,梯子的顶端滑动多少米?

(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?

解 依题意,梯子的顶端距墙角=8(m).

(1)若梯子顶端下滑1m,则顶端距地面7m.设梯子底端滑动xm.

则根据勾股定理,列方程72+(6+x)2=102,整理,得x2+12x-15=0,

解这个方程,得x1≈1.14,x2≈-13.14(舍去),

所以梯子顶端下滑1m,底端水平滑动约1.14m.

(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动xm.

则根据勾股定理,列方程(8-x)2+(6+1)2=100.整理,得x2-16x+13=0.

解这个方程,得x1≈0.86,x2≈15.14(舍去).

所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.

(3)设梯子顶端向下滑动xm时,底端向外也滑动xm.

则根据勾股定理,列方程 (8-x)2+(6+x)2=102,整理,得2x2-4x=0,

解这个方程,得x1=0(舍去),x2=2.

所以梯子顶端向下滑动2m时,底端向外也滑动2m.

说明 求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.

十一、航海问题

例11 如图5所示,我海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航.一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.

(1)小岛D和小岛F相距多少海里?

(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)

解(1)F位于D的正南方向,则DF⊥BC.因为AB⊥BC,D为AC的中点,所以DF=AB=100海里,所以,小岛D与小岛F相距100海里.

(2)设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里,EF=AB+BC-(AB+BE)-CF=(300-2x)海里.

在Rt△DEF中,根据勾股定理可得方程x2=1002+(300-2x)2,整理,得3x2-1200x+100000=0.

解这个方程,得x1=200-≈118.4,x2=200+(不合题意,舍去).

所以,相遇时补给船大约航行了118.4海里.

说明 求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.

十二、图表信息

例12 如图6所示,正方形ABCD的边长为12,划分成12×12个小正方形格,将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.

请你认真观察思考后回答下列问题:

(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:

纸片的边长n 2 3 4 5 6

使用的纸片张数

(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.

①当n=2时,求S1∶S2的值;

②是否存在使得S1=S2的n值?若存在,请求出来;若不存在,请说明理由.

解(1)依题意可依次填表为:11、10、9、8、7.

(2)S1=n2+(12-n)[n2-(n-1)2]=-n2+25n-12.

①当n=2时,S1=-22+25×2-12=34,S2=12×12-34=110.

所以S1∶S2=34∶110=17∶55.

②若S1=S2,则有-n2+25n-12=×122,即n2-25n+84=0,

解这个方程,得n1=4,n2=21(舍去).

所以当n=4时,S1=S2.所以这样的n值是存在的.

说明 求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.

十三、探索在在问题

例13 将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.

(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?

(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.

解(1)设剪成两段后其中一段为xcm,则另一段为(20-x)cm.

则根据题意,得+=17,解得x1=16,x2=4,

当x=16时,20-x=4,当x=4时,20-x=16,

答 这段铁丝剪成两段后的长度分别是4cm和16cm.

(2)不能.理由是:不妨设剪成两段后其中一段为ycm,则另一段为(20-y)cm.则由题意得+=12,整理,得y2-20y+104=0,移项并配方,得(y-10)2=-4<0,所以此方程无解,即不能剪成两段使得面积和为12cm2.

说明 本题的第(2)小问也可以运用求根公式中的b2-4ac来判定.若b2-4ac≥0,方程有两个实数根,若b2-4ac<0,方程没有实数根,本题中的b2-4ac=-16<0即无解.

十四、平分几何图形的周长与面积问题

例14 如图7,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB上.

(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;

(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;

(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分?若存在,求此时BE的长;若不存在,请说明理由.

解(1)由已知条件得,梯形周长为12,高4,面积为28.

过点F作FG⊥BC于G,过点A作AK⊥BC于K.

则可得,FG=×4,

所以S△BEF=BE·FG=-x2+x(7≤x≤10).

(2)存在.由(1)得-x2+x=14,解这个方程,得x1=7,x2=5(不合题意,舍去),

所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE=7.

(3)不存在.假设存在,显然有S△BEF∶S多边形AFECD =1∶2,

即(BE+BF)∶(AF+AD+DC)=1∶2.则有-x2+x=,

整理,得3x2-24x+70=0,此时的求根公式中的b2-4ac=576-840<0,

所以不存在这样的实数x.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分.

说明 求解本题时应注意:一是要能正确确定x的取值范围;二是在求得x2=5时,并不属于7≤x≤10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.

十五、利用图形探索规律

例15 在如图8中,每个正方形有边长为1 的小正方形组成:

(1)观察图形,请填写下列表格:

正方形边长 1 3 5 7 … n(奇数)

黑色小正方形个数 …

正方形边长 2 4 6 8 … n(偶数)

黑色小正方形个数 …

(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.

解(1)观察分析图案可知正方形的边长为1、3、5、7、…、n 时,黑色正方形的个数为1、5、9、13、2n-1(奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形的个数为4、8、12、16、2n(偶数).

(2)由(1)可知n为偶数时P1=2n,所以P2=n2-2n.根据题意,得n2-2n=5×2n,即n2-12n=0,解得n1=12,n2=0(不合题意,舍去).所以存在偶数n=12,使得P2=5P1.

说明 本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解. 自己买本练习做就行了

免费下载这份资料?立即下载

三种解法解一道一元二次方程计算题的例题

例1.解方程(1)(3x+1)^2;=7 (2)9x^2;-24x+16=11   分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)^2;,右边=11>0,所以此方程也可用直接开平方法解。   (1)解:(3x+1)^2=7   ∴(3x+1)^2=7   ∴3x+1=±√7(注意不要丢解符号)   ∴x= ﹙﹣1±√7﹚/3   ∴原方程的解为x?=﹙√7﹣1﹚/3,x?=﹙﹣√7-1﹚/3   (2)解: 9x^2-24x+16=11   ∴(3x-4)^2=11   ∴3x-4=±√11   ∴x=﹙ 4±√11﹚/3   ∴原方程的解为x?=﹙4﹢√11﹚/3,x?= ﹙4﹣√11﹚/3   2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)   先将常数c移到方程右边:ax^2+bx=-c   将二次项系数化为1:x^2+b/ax=- c/a   方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2;   方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²   当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²   ∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式)   例2.用配方法解方程 3x²-4x-2=0   解:将常数项移到方程右边 3x²-4x=2   将二次项系数化为1:x²-﹙4/3﹚x= ?   方程两边都加上一次项系数一半的平方:x²-﹙4/3﹚x+( 4/6)²=? +(4/6 )²   配方:(x-4/6)²= ? +(4/6 )²   直接开平方得:x-4/6=± √[? +(4/6 )² ]   ∴x= 4/6± √[? +(4/6 )² ]   ∴原方程的解为x?=4/6﹢√﹙10/6﹚,x?=4/6﹣√﹙10/6﹚ .   3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±√(b²-4ac)]/(2a) , (b²-4ac≥0)就可得到方程的根。   例3.用公式法解方程 2x²-8x=-5   解:将方程化为一般形式:2x²-8x+5=0   ∴a=2, b=-8, c=5   b²-4ac=(-8)²-4×2×5=64-40=24>0   ∴x=[(-b±√(b²-4ac)]/(2a)   ∴原方程的解为x?=,x?= .   4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。   例4.用因式分解法解下列方程:   (1) (x+3)(x-6)=-8 (2) 2x²+3x=0   (3) 6x²+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)   (1)解:(x+3)(x-6)=-8 化简整理得   x2-3x-10=0 (方程左边为二次三项式,右边为零)   (x-5)(x+2)=0 (方程左边分解因式)   ∴x-5=0或x+2=0 (转化成两个一元一次方程)   ∴x1=5,x2=-2是原方程的解。   (2)解:2x2+3x=0   x(2x+3)=0 (用提公因式法将方程左边分解因式)   ∴x=0或2x+3=0 (转化成两个一元一次方程)   ∴x1=0,x2=-是原方程的解。   注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。   (3)解:6x2+5x-50=0   (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)   ∴2x-5=0或3x+10=0   ∴x1=, x2=- 是原方程的解。   (4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)   (x-2)(x-2 )=0   ∴x1=2 ,x2=2是原方程的解。 例1.解方程(1)(3x+1)^2;=7 (2)9x^2;-24x+16=11

分析:(1)此方程显然用直接开平方法好做,

(2)方程左边是完全平方式(3x-4)^2;,右边=11>0,所以此方程也可用直接开平方法解。   (1)解:(3x+1)^2=7

∴(3x+1)^2=7

∴3x+1=±√7(注意不要丢解符号)

∴x= ﹙﹣1±√7﹚/3

∴原方程的解为x?=﹙√7﹣1﹚/3,x?=﹙﹣√7-1﹚/3

(2)解: 9x^2-24x+16=11

∴(3x-4)^2=11   ∴3x-4=±√11

∴x=﹙ 4±√11﹚/3   ∴原方程的解为x?=﹙4﹢√11﹚/3,x?= ﹙4﹣√11﹚/3

2.配方法:用配方法解方程ax^2+bx+c=0 (a≠0)

先将常数c移到方程右边:ax^2+bx=-c

将二次项系数化为1:x^2+b/ax=- c/a

方程两边分别加上一次项系数的一半的平方:x^2+b/ax+( b/2a)^2=- c/a+( b/2a)^2;

方程左边成为一个完全平方式:(x+b/2a )2= -c/a﹢﹙b/2a﹚²

当b²-4ac≥0时,x+b/2a =±√﹙﹣c/a﹚﹢﹙b/2a﹚²

∴x=﹛﹣b±[√﹙b²﹣4ac﹚]﹜/2a(这就是求根公式)

例2.用配方法解方程 3x²-4x-2=0

解:将常数项移到方程右边 3x²-4x=2

将二次项系数化为1:x²-﹙4/3﹚x= ?

方程两边都加上一次项系数一半的平方:x²-﹙4/3﹚x+( 4/6)²=? +(4/6 )²

配方:(x-4/6)²= ? +(4/6 )²

直接开平方得:x-4/6=± √[? +(4/6 )² ]

∴x= 4/6± √[? +(4/6 )² ]

∴原方程的解为x?=4/6﹢√﹙10/6﹚,x?=4/6﹣√﹙10/6﹚ .

3.公式法:

例3.用公式法解方程 2x²-8x=-5

解:将方程化为一般形式:2x²-8x+5=0

∴a=2, b=-8, c=5

b²-4ac=(-8)²-4×2×5=64-40=24>0

∴x=[(-b±√(b²-4ac)]/(2a)

∴原方程的解为x?=,x?= .

4.因式分解法:

例4.用因式分解法解下列方程:

(1) (x+3)(x-6)=-8 (2) 2x²+3x=0   (3) 6x²+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学) (1)解:(x+3)(x-6)=-8 化简整理得

x2-3x-10=0 (方程左边为二次三项式,右边为零)

(x-5)(x+2)=0 (方程左边分解因式)

∴x-5=0或x+2=0 (转化成两个一元一次方程)

∴x1=5,x2=-2是原方程的解。

(2)解:2x2+3x=0

x(2x+3)=0 (用提公因式法将方程左边分解因式)

∴x=0或2x+3=0 (转化成两个一元一次方程)

∴x1=0,x2=-是原方程的解。

注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。

(3)解:6x2+5x-50=0

(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)

∴2x-5=0或3x+10=0

∴x1=, x2=- 是原方程的解。

(4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)

(x-2)(x-2 )=0

∴x1=2 ,x2=2是原方程的解。

一元二次方程怎么解 讲解一下来个例题

以x的平方+4x=5为例

第一种方法使用配方法

等号两边同时加上四 那呢就是x的平房+4x+4=9

即(x+2)的平方=9=3的平方

所以X+2 =3或x+2=-3

所以x=1或者x=-5

第二种是用公式法

此方程的标准形式为 x的平方+4x-5=0

所以二次项系数a=1

一次项系数b=4

常数项c=-5

所以b的平方—4ac=16—(4乘以1乘以-5)=36

因为36大于0 所以此方程有实数解

由求根公式得 x=[-b±√(b^2-4ac)]/(2a)

再将各项系数代入 就可以求得x的两个值了

配方法解一元二次方程例题

1、例题:x²-2x=0

变化:x²-2x+1=1

变化:(x-1) ²=1

变化:x-1=±1

解为:x=2 或 x=0

2、例题:x²-2x=4

变化:x²-2x+1=5

变化:(x-1) ²=5

变化:x-1=±√5

解为:x=1+√5 或 x=1-√5

3、例题:2x²-4x=4

变化:x²-2x+1=3

变化:(x-1) ²=3

变化:x-1=±√3

解为:x=1+√3 或 x=1-√3

4、例题:x²-4x=-4

变化:x²-4x+4=0 用配方法解一元二次方程练习题

1.用适当的数填空:

①、x2+6x+ =(x+ )2;

②、x2-5x+ =(x- )2;

③、x2+ x+ =(x+ )2;

④、x2-9x+ =(x- )2

2.将二次三项式2x2-3x-5进行配方,其结果为_________.

3.已知4x2-ax+1可变为(2x-b)2的形式,则ab=_______.

4.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b的形式为_______,所以方程的根为_________.

5.若x2+6x+m2是一个完全平方式,则m的值是( )

A.3 B.-3 C.±3 D.以上都不对

6.用配方法将二次三项式a2-4a+5变形,结果是( )

A.(a-2)2+1 B.(a+2)2-1 C.(a+2)2+1 D.(a-2)2-1

7.把方程x+3=4x配方,得( )

A.(x-2)2=7 B.(x+2)2=21 C.(x-2)2=1 D.(x+2)2=2

8.用配方法解方程x2+4x=10的根为( )

A.2± B.-2± C.-2+ D.2-

9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值( )

A.总不小于2 B.总不小于7

C.可为任何实数 D.可能为负数

10.用配方法解下列方程:

(1)3x2-5x=2. (2)x2+8x=9

(3)x2+12x-15=0 (4) x2-x-4=0

11.用配方法求解下列问题

(1)求2x2-7x+2的最小值 ;

(2)求-3x2+5x+1的最大值。

一元二次方程例题带答案 30道

一、增长率问题

例1 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.

解 设这两个月的平均增长率是x.,则根据题意,得200(1-20%)(1+x)2=193.6,

即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去).

答 这两个月的平均增长率是10%.

说明 这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n.对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n.

二、商品定价

例2 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?

解 根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,

解这个方程,得a1=25,a2=31.

因为21×(1+20%)=25.2,所以a2=31不合题意,舍去.

所以350-10a=350-10×25=100(件).

答 需要进货100件,每件商品应定价25元.

说明 商品的定价问题是商品交易中的重要问题,也是各种考试的热点.

三、储蓄问题

例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(假设不计利息税)

解 设第一次存款时的年利率为x.

则根据题意,得[1000(1+x)-500](1+0.9x)=530.整理,得90x2+145x-3=0.

解这个方程,得x1≈0.0204=2.04%,x2≈-1.63.由于存款利率不能为负数,所以将x2≈-1.63舍去.

答 第一次存款的年利率约是2.04%.

说明 这里是按教育储蓄求解的,应注意不计利息税.

四、趣味问题

例4 一个醉汉拿着一根竹竿进城,横着怎么也拿不进去,量竹竿长比城门宽4米,旁边一个醉汉嘲笑他,你没看城门高吗,竖着拿就可以进去啦,结果竖着比城门高2米,二人没办法,只好请教聪明人,聪明人教他们二人沿着门的对角斜着拿,二人一试,不多不少刚好进城,你知道竹竿有多长吗?

解 设渠道的深度为xm,那么渠底宽为(x+0.1)m,上口宽为(x+0.1+1.4)m.

则根据题意,得(x+0.1+x+1.4+0.1)·x=1.8,整理,得x2+0.8x-1.8=0.

解这个方程,得x1=-1.8(舍去),x2=1.

所以x+1.4+0.1=1+1.4+0.1=2.5.

答 渠道的上口宽2.5m,渠深1m.

说明 求解本题开始时好象无从下笔,但只要能仔细地阅读和口味,就能从中找到等量关系,列出方程求解.

五、古诗问题

例5 读诗词解题:(通过列方程式,算出周瑜去世时的年龄).

大江东去浪淘尽,千古风流数人物;

而立之年督东吴,早逝英年两位数;

十位恰小个位三,个位平方与寿符;

哪位学子算得快,多少年华属周瑜?

解 设周瑜逝世时的年龄的个位数字为x,则十位数字为x-3.

则根据题意,得x2=10(x-3)+x,即x2-11x+30=0,解这个方程,得x=5或x=6.

当x=5时,周瑜的年龄25岁,非而立之年,不合题意,舍去;

当x=6时,周瑜年龄为36岁,完全符合题意.

答 周瑜去世的年龄为36岁.

说明 本题虽然是一道古诗问题,但它涉及到数字和年龄问题,通过求解同学们应从中认真口味.

六、象棋比赛

例6 象棋比赛中,每个选手都与其他选手恰好比赛一局,每局赢者记2分,输者记0分.如果平局,两个选手各记1分,领司有四个同学统计了中全部选 手的得分总数,分别是1979,1980,1984,1985.经核实,有一位同学统计无误.试计算这次比赛共有多少个选手参加.

解 设共有n个选手参加比赛,每个选手都要与(n-1)个选手比赛一局,共计n(n-1)局,但两个选手的对局从每个选手的角度各自统计了一次,因此实际比赛总局数应为n(n-1)局.由于每局共计2分,所以全部选手得分总共为n(n-1)分.显然(n-1)与n为相邻的自然数,容易验证,相邻两自然数乘积的末位数字只能是0,2,6,故总分不可能是1979,1984,1985,因此总分只能是1980,于是由n(n-1)=1980,得n2-n-1980=0,解得n1=45,n2=-44(舍去).

答 参加比赛的选手共有45人.

说明 类似于本题中的象棋比赛的其它体育比赛或互赠贺年片等问题,都可以仿照些方法求解.

七、情景对话

例7 春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准.

某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游?

解 设该单位这次共有x名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.

则根据题意,得[1000-20(x-25)]x=27000.

整理,得x2-75x+1350=0,解这个方程,得x1=45,x2=30.

当x=45时,1000-20(x-25)=600<700,故舍去x1;

当x2=30时,1000-20(x-25)=900>700,符合题意.

答:该单位这次共有30名员工去天水湾风景区旅游.

说明 求解本题要时刻注意对话框中的数量关系,求得的解还要注意分类讨论,从中找出符合题意的结论.

八、等积变形

例8 将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)

(1)设计方案1(如图2)花园中修两条互相垂直且宽度相等的小路.

(2)设计方案2(如图3)花园中每个角的扇形都相同.

以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇形的半径;若不能符合条件,请说明理由.

解 都能.(1)设小路宽为x,则18x+16x-x2=×18×15,即x2-34x+180=0,

解这个方程,得x=,即x≈6.6.

(2)设扇形半径为r,则3.14r2=×18×15,即r2≈57.32,所以r≈7.6.

说明 等积变形一般都是涉及的是常见图形的体积,面积公式;其原则是形变积不变;或形变积也变,但重量不变,等等.

九、动态几何问题

例9 如图4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.

(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?

(2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.

解 因为∠C=90°,所以AB===10(cm).

(1)设xs后,可使△PCQ的面积为8cm2,所以 AP=xcm,PC=(6-x)cm,CQ=2xcm.

则根据题意,得·(6-x)·2x=8.整理,得x2-6x+8=0,解这个方程,得x1=2,x2=4.

所以P、Q同时出发,2s或4s后可使△PCQ的面积为8cm2.

(2)设点P出发x秒后,△PCQ的面积等于△ABC面积的一半.

则根据题意,得(6-x)·2x=××6×8.整理,得x2-6x+12=0.

由于此方程没有实数根,所以不存在使△PCQ的面积等于ABC面积一半的时刻.

说明 本题虽然是一道动态型应用题,但它又要运用到行程的知识,求解时必须依据路程=速度×时间.

十、梯子问题

例10 一个长为10m的梯子斜靠在墙上,梯子的底端距墙角6m.

(1)若梯子的顶端下滑1m,求梯子的底端水平滑动多少米?

(2)若梯子的底端水平向外滑动1m,梯子的顶端滑动多少米?

(3)如果梯子顶端向下滑动的距离等于底端向外滑动的距离,那么滑动的距离是多少米?

解 依题意,梯子的顶端距墙角=8(m).

(1)若梯子顶端下滑1m,则顶端距地面7m.设梯子底端滑动xm.

则根据勾股定理,列方程72+(6+x)2=102,整理,得x2+12x-15=0,

解这个方程,得x1≈1.14,x2≈-13.14(舍去),

所以梯子顶端下滑1m,底端水平滑动约1.14m.

(2)当梯子底端水平向外滑动1m时,设梯子顶端向下滑动xm.

则根据勾股定理,列方程(8-x)2+(6+1)2=100.整理,得x2-16x+13=0.

解这个方程,得x1≈0.86,x2≈15.14(舍去).

所以若梯子底端水平向外滑动1m,则顶端下滑约0.86m.

(3)设梯子顶端向下滑动xm时,底端向外也滑动xm.

则根据勾股定理,列方程 (8-x)2+(6+x)2=102,整理,得2x2-4x=0,

解这个方程,得x1=0(舍去),x2=2.

所以梯子顶端向下滑动2m时,底端向外也滑动2m.

说明 求解时应注意无论梯子沿墙如何上下滑动,梯子始终与墙上、地面构成直角三角形.

十一、航海问题

例11 如图5所示,我海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D恰好位于AC的中点,岛上有一补给码头;小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航.一艘补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送往军舰.

(1)小岛D和小岛F相距多少海里?

(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(精确到0.1海里)

解(1)F位于D的正南方向,则DF⊥BC.因为AB⊥BC,D为AC的中点,所以DF=AB=100海里,所以,小岛D与小岛F相距100海里.

(2)设相遇时补给船航行了x海里,那么DE=x海里,AB+BE=2x海里,EF=AB+BC-(AB+BE)-CF=(300-2x)海里.

在Rt△DEF中,根据勾股定理可得方程x2=1002+(300-2x)2,整理,得3x2-1200x+100000=0.

解这个方程,得x1=200-≈118.4,x2=200+(不合题意,舍去).

所以,相遇时补给船大约航行了118.4海里.

说明 求解本题时,一定要认真地分析题意,及时发现题目中的等量关系,并能从图形中寻找直角三角形,以便正确运用勾股定理布列一元二次方程.

十二、图表信息

例12 如图6所示,正方形ABCD的边长为12,划分成12×12个小正方形格,将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式,黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)个小正方形.如此摆放下去,直到纸片盖住正方形ABCD的右下角为止.

请你认真观察思考后回答下列问题:

(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:

纸片的边长n 2 3 4 5 6

使用的纸片张数

(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2.

①当n=2时,求S1∶S2的值;

②是否存在使得S1=S2的n值?若存在,请求出来;若不存在,请说明理由.

解(1)依题意可依次填表为:11、10、9、8、7.

(2)S1=n2+(12-n)[n2-(n-1)2]=-n2+25n-12.

①当n=2时,S1=-22+25×2-12=34,S2=12×12-34=110.

所以S1∶S2=34∶110=17∶55.

②若S1=S2,则有-n2+25n-12=×122,即n2-25n+84=0,

解这个方程,得n1=4,n2=21(舍去).

所以当n=4时,S1=S2.所以这样的n值是存在的.

说明 求解本题时要通过阅读题设条件及提供的图表,及时挖掘其中的隐含条件,对于求解第(3)小题,可以先假定问题的存在,进而构造一元二次方程,看得到的一元二次方程是否有实数根来加以判断.

十三、探索在在问题

例13 将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.

(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?

(2)两个正方形的面积之和可能等于12cm2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.

解(1)设剪成两段后其中一段为xcm,则另一段为(20-x)cm.

则根据题意,得+=17,解得x1=16,x2=4,

当x=16时,20-x=4,当x=4时,20-x=16,

答 这段铁丝剪成两段后的长度分别是4cm和16cm.

(2)不能.理由是:不妨设剪成两段后其中一段为ycm,则另一段为(20-y)cm.则由题意得+=12,整理,得y2-20y+104=0,移项并配方,得(y-10)2=-4<0,所以此方程无解,即不能剪成两段使得面积和为12cm2.

说明 本题的第(2)小问也可以运用求根公式中的b2-4ac来判定.若b2-4ac≥0,方程有两个实数根,若b2-4ac<0,方程没有实数根,本题中的b2-4ac=-16<0即无解.

十四、平分几何图形的周长与面积问题

例14 如图7,在等腰梯形ABCD中,AB=DC=5,AD=4,BC=10.点E在下底边BC上,点F在腰AB上.

(1)若EF平分等腰梯形ABCD的周长,设BE长为x,试用含x的代数式表示△BEF的面积;

(2)是否存在线段EF将等腰梯形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;

(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分?若存在,求此时BE的长;若不存在,请说明理由.

解(1)由已知条件得,梯形周长为12,高4,面积为28.

过点F作FG⊥BC于G,过点A作AK⊥BC于K.

则可得,FG=×4,

所以S△BEF=BE·FG=-x2+x(7≤x≤10).

(2)存在.由(1)得-x2+x=14,解这个方程,得x1=7,x2=5(不合题意,舍去),

所以存在线段EF将等腰梯形ABCD的周长与面积同时平分,此时BE=7.

(3)不存在.假设存在,显然有S△BEF∶S多边形AFECD =1∶2,

即(BE+BF)∶(AF+AD+DC)=1∶2.则有-x2+x=,

整理,得3x2-24x+70=0,此时的求根公式中的b2-4ac=576-840<0,

所以不存在这样的实数x.即不存在线段EF将等腰梯形ABCD的周长和面积同时分成1∶2的两部分.

说明 求解本题时应注意:一是要能正确确定x的取值范围;二是在求得x2=5时,并不属于7≤x≤10,应及时地舍去;三是处理第(3)个问题时的实质是利用一元二次方程来探索问题的存在性.

十五、利用图形探索规律

例15 在如图8中,每个正方形有边长为1 的小正方形组成:

(1)观察图形,请填写下列表格:

正方形边长 1 3 5 7 … n(奇数)

黑色小正方形个数 …

正方形边长 2 4 6 8 … n(偶数)

黑色小正方形个数 …

(2)在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.

解(1)观察分析图案可知正方形的边长为1、3、5、7、…、n 时,黑色正方形的个数为1、5、9、13、2n-1(奇数);正方形的边长为2、4、6、8、…、n 时,黑色正方形的个数为4、8、12、16、2n(偶数).

(2)由(1)可知n为偶数时P1=2n,所以P2=n2-2n.根据题意,得n2-2n=5×2n,即n2-12n=0,解得n1=12,n2=0(不合题意,舍去).所以存在偶数n=12,使得P2=5P1.

说明 本题的第(2)小问是属于存在性问题,求解时,可以先假设结论存在,进而从中找到数量关系,使问题获解. 自己买本练习做就行了

一元二次方程例题(配方法解一元二次方程例题)