数学因式分解的12种方法(因式分解公式一览表)
数学因式分解的12种方法(因式分解公式一览表)

求因式分解的所有方法及公式

因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法,十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。

注意四原则:

1.分解要彻底(是否有公因式,是否可用公式)

2.最后结果只有小括号

3.最后结果中多项式首项系数为正(例如:-3x2+x=x(-3x+1))不一定首项一定为正,如-2x-3xy-4xz=-x(2+3y+4z)

归纳方法:

1.提公因式法。

2.运用公式法。

3.拼凑法。

拼凑法实例

提取公因式法

各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。

口诀:找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。

例如:-am+bm+cm=-(a-b-c)m

a(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y)。

注意:把

变成

不叫提公因式

公式法

如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。

平方差公式:

反过来为

完全平方公式:

反过来为

反过来为

注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

两根式:

立方和公式:a3+b3=(a+b)(a2-ab+b2)

立方差公式:a3-b3=(a-b)(a2+ab+b2)

完全立方公式:a3±3a2b+3ab2±b3=(a±b)3

公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)

例如:a2+4ab+4b2 =(a+2b)2

1.分解因式技巧掌握:

①分解因式是多项式的恒等变形,要求等式左边必须是多项式。

②分解因式的结果必须是以乘积的形式表示。

③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。

④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

2.提公因式法基本步骤:

(1)找出公因式

(2)提公因式并确定另一个因式

①第一步找公因式可按照确定公因式的方法先确定系数再确定字母

②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式

③提完公因式后,另一因式的项数与原多项式的项数相同

解方程法

通过解方程来进行因式分解,如:

X2+2X+1=0 ,解,得X1=-1,X2=-1,就得到原式=(X+1)×(X+1)

3竞赛方法编辑

分组分解法

分组分解是解方程的一种简洁的方法,下面是这个方法的详细讲解。

能分组分解的多项式有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。

比如:

ax+ay+bx+by

=a(x+y)+b(x+y)

=(a+b)(x+y)

我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。

同样,这道题也可以这样做。

ax+ay+bx+by

=x(a+b)+y(a+b)

=(a+b)(x+y)

几道例题:

1. 5ax+5bx+3ay+3by

解法:=5x(a+b)+3y(a+b)=(5x+3y)(a+b)

说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。

2. x2-x-y2-y

解法:=(x2-y2)-(x+y)

=(x+y)(x-y)-(x+y)

=(x+y)(x-y-1)

利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。

十字相乘法

十字相乘法在解题时是一个很好用的方法,也很简单。

这种方法有两种情况。

①x2+(p+q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p+q)x+pq=(x+p)(x+q) .

例1:x2-2x-8

=(x-4)(x+2)

②kx2+mx+n型的式子的因式分解

如果有k=ab,n=cd,且有ad+bc=m时,那么kx2+mx+n=(ax+c)(bx+d).

例2:分解7x2-19x-6

图示如下:a=1 b=7 c=2 d=-3

因为 -3×7=-21,1×2=2,且-21+2=-19,

所以,原式=(7x+2)(x-3).

十字相乘法口诀:分二次项,分常数项,交叉相乘求和得一次项。

例3:6X2+7X+2

第1项二次项(6X2)拆分为:2×3

第3项常数项(2)拆分为:1×2

2(X) 3(X)

1 2

对角相乘:1×3+2×2得第2项一次项(7X)

纵向相乘,横向相加。

与之对应的还有双十字相乘法,也可以学一学。

拆添项法

这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。

例如:bc(b+c)+ca(c-a)-ab(a+b)

=bc(c-a+a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

=(bc+ca)(c-a)+(bc-ab)(a+b)

=c(c-a)(b+a)+b(a+b)(c-a)

=(c+b)(c-a)(a+b).

配方法

对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。

例如:x2+3x-40

=x2+3x+2.25-42.25

=(x+1.5)2-(6.5)2

=(x+8)(x-5).

因式定理

对于多项式f(x),如果f(a)=0,那么f(x)必含有因式x-a.

例如:f(x)=x2+5x+6,f(-2)=0,则可确定x+2是x2+5x+6的一个因式。(事实上,x2+5x+6=(x+2)(x+3).)

注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数

2.对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数

换元法

有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。注意:换元后勿忘还元。

例如在分解(x2+x+1)(x2+x+2)-12时,可以令y=x2+x,则

原式=(y+1)(y+2)-12

=y2+3y+2-12=y2+3y-10

=(y+5)(y-2)

=(x2+x+5)(x2+x-2)

=(x2+x+5)(x+2)(x-1).

综合除法

令多项式f(x)=0,求出其根为x1,x2,x3,……,xn,则该多项式可分解为f(x)=a(x-x1)(x-x2)(x-x3)……(x-xn) .

例如在分解2x4+7x3-2x2-13x+6时,令2x4 +7x3-2x2-13x+6=0,

则通过综合除法可知,该方程的根为0.5 ,-3,-2,1.

所以2x4+7x3-2x2-13x+6=(2x-1)(x+3)(x+2)(x-1).

令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1,x2,x3,……xn ,则多项式可因式分解为f(x)= f(x)=a(x-x1)(x-x2)(x-x3)……(x-xn).

与方法⑼相比,能避开解方程的繁琐,但是不够准确。

主元法

例如在分解x3+2x2-5x-6时,可以令y=x3+2x2-5x-6.

作出其图像,与x轴交点为-3,-1,2

则x3+2x2-5x-6=(x+1)(x+3)(x-2)

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

特殊值法

将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。

例如在分解x3+9x2+23x+15时,令x=2,则

x3+9x2+23x+15=8+36+46+15=105,

将105分解成3个质因数的积,即105=3×5×7 .

注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值,

则x3+9x2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。

待定系数法

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

例如在分解x4-x3-5x2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。

于是设x4-x3-5x2-6x-4=(x2+ax+b)(x2+cx+d)

相关公式

=x4+(a+c)x3+(ac+b+d)x2+(ad+bc)x+bd

由此可得

a+c=-1,

ac+b+d=-5,

ad+bc=-6,

bd=-4.

解得a=1,b=1,c=-2,d=-4.

则x4-x3-5x2-6x-4=(x2+x+1)(x2-2x-4).

也可以参看右图。

双十字相乘法

双十字相乘法属于因式分解的一类,类似于十字相乘法。

双十字相乘法就是二元二次六项式,启始的式子如下:

ax2+bxy+cy2+dx+ey+f

x、y为未知数,其余都是常数

用一道例题来说明如何使用。

例:分解因式:x2+5xy+6y2+8x+18y+12.

分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。

解:图如下,把所有的数字交叉相连即可

x  2y  2

x  3y  6

∴原式=(x+2y+2)(x+3y+6).

双十字相乘法其步骤为:

①先用十字相乘法分解2次项,如十字相乘图①中x2+5xy+6y2=(x+2y)(x+3y)

②先依一个字母(如y)的一次系数分数常数项。如十字相乘图②中6y2+18y+12=(2y+2)(3y+6)

③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错。

④纵向相乘,横向相加。

二次多项式

(根与系数关系二次多项式因式分解)

例:对于二次多项式 aX2+bX+c(a≠0)

当△=b2-4ac≥0时,设aX2+bX+c=0的解为X1,X2

=a(X2-(X1+X2)X+X1X2)

=a(X-X1)(X-X2).

4分解步骤编辑

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解

④分解因式,必须进行到每一个多项式因式都不能再分解为止。

也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。”

5例题编辑

1.分解因式(1+y)2-2x2(1+y2)+x4(1-y)2.

解:原式=(1+y)2+2(1+y)x2(1-y)+x4(1-y)2-2(1+y)x2(1-y)-2x2(1+y2)(补项)

=[(1+y)+x2(1-y)]2-2(1+y)x2(1-y)-2x2(1+y2)(完全平方)

=[(1+y)+x2(1-y)]2-(2x)2

=[(1+y)+x2(1-y)+2x][(1+y)+x2(1-y)-2x]

=(x2-x2y+2x+y+1)(x^2-x2y-2x+y+1)

=[(x+1)2-y(x2-1)][(x-1)2-y(x2-1)]

=[(x+1)2-y(x+1)(x-1)][(x-1)2-y(x+1)(x-1)]

=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).

2.求证:对于任何整数x,y,下式的值都不会为33:

x5+3x4y-5x3y2-15x2y3+4xy4+12y5.

解:原式=(x5+3x4y)-(5x3y2+15x2y3)+(4xy4+12y5)

=x4(x+3y)-5x2y2(x+3y)+4y4(x+3y)

=(x+3y)(x4-5x2y2+4y4)

=(x+3y)(x2-4y2)(x2-y2)

=(x+3y)(x+y)(x-y)(x+2y)(x-2y).

当y=0时,原式=x5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。

3..△ABC的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证:这个三角形是等腰三角形。

分析:此题实质上是对关系式的等号左边的多项式进行因式分解。

证明:∵-c2+a2+2ab-2bc=0,

∴(a+c)(a-c)+2b(a-c)=0.

∴(a-c)(a+2b+c)=0.

∵a、b、c是△ABC的三条边,

∴a+2b+c>0.

∴a-c=0,

即a=c,△ABC为等腰三角形。

4.把-12x2n×yn+18xn+2yn+1-6xn×yn-1分解因式。

解:-12x2n×yn+18xn+2yn+1-6xn×yn-1

=-6xn×yn-1(2xn×y-3x2y2+1).

6四个注意编辑

因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举下例,可供参考。

例1 把-a2-b2+2ab+4分解因式。

解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-[(a-b)2-4]=-(a-b+2)(a-b-2)

这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误。

这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。

分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y(x+1)(4x2-9)的错误,因为4x2-9还可分解为(2x+3)(2x-3)。

考试时应注意:

在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数!

由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的。

7应用编辑

1. 应用于多项式除法。

:a(b−1)(ab+2b+a)

说明:(ab+b)2−(a+b)2 = (ab+b+a+b)(ab+b−a−b) = (ab+2b+a)(ab−a) = a(b−1)(ab+2b+a).

2. 应用于高次方程的求根。

3. 应用于分式的通分与约分

顺带一提,梅森合数分解已经取得一些微不足道的进展:

1,p=4r+3,如果8r+7也是素数,则:(8r+7)|(2P-1)。即(2p+1)|(2P-1)

例如:

23|(211-1);;11=4×2+3

47|(223-1);;23=4×5+3

167|(283-1);,,,.83=4×20+3

2,p=2n×32+1,,则(6p+1)|(2P-1),

例如:223|(237-1);37=2×2×3×3+1

439|(273-1);73=2×2×2×3×3+1

3463|(2577-1);577=2×2×2×2×2×2×3×3+1

3,p=2n×3m×5s-1,则(8p+1)|(2P-1)

例如;233|(229-1);29=2×3×5-1

1433|(2179-1);179=2×2×3×3×5-1

1913|(2239-1);239=2×2×2×2×3×5-1

8分解公式编辑

平方差公式

(a+b)(a-b)=a2-b2

完全平方公式

(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

立方和(差)

两数差乘以它们的平方和与它们的积的和等于两数的立方差。

即a3-b3=(a-b)(a2+ab+b2)

证明如下: a3-b3=a3-3a2b+3ab2-b3

所以a3-b3=(a-b)a3-[-3(a2)b+3ab2]=(a-b)(a-b)2+3ab(a-b)

=(a-b)(a2-2ab+b2+3ab)=(a-b)(a2+ab+b2)

同理 a3+b3=(a+b)(a2-ab+b2)

十字相乘公式

十字相乘法能把某些二次三项式分解因式。要务必注意各项系数的符号。

(x+a)(x+b)=x2+(a+b)x+ab 因式分解的十二种方法 :把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下:1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来。

因式分解的练习题

⑴提公因式法

①公因式:各项都含有的公共的因式叫做这个多项式各项的~.

②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.

am+bm+cm=m(a+b+c)

③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

⑵运用公式法

①平方差公式:. a^2-b^2=(a+b)(a-b)

②完全平方公式: a^2±2ab+b^2=(a±b)^2

※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.

③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).

立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).

④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3

⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]

a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)

⑶分组分解法

分组分解法:把一个多项式分组后,再进行分解因式的方法.

分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.

⑷拆项、补项法

拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.

⑸十字相乘法

①x^2+(p q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax b)(cx d)

a \-----/b ac=k bd=n

c /-----\d ad+bc=m

※ 多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式都不能再分解为止.

(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。

经典例题:

1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2

解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=[(1+y)+x^2(1-y)]^2-(2x)^2

=[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x]

=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)

=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]

=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)

2.证明:对于任何数x,y,下式的值都不会为33

x^5+3x^4y-5x^3y^2+4xy^4+12y^5

解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)

=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)

=(x+3y)(x^4-5x^2y^2+4y^4)

=(x+3y)(x^2-4y^2)(x^2-y^2)

=(x+3y)(x+y)(x-y)(x+2y)(x-2y)

当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立

因式分解的十二种方法

把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:

1、 提公因法

如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、 分解因式x -2x -x(2003淮安市中考题)

x -2x -x=x(x -2x-1)

2、 应用公式法

由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a +4ab+4b (2003南通市中考题)

解:a +4ab+4b =(a+2b)

3、 分组分解法

要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)

例3、分解因式m +5n-mn-5m

解:m +5n-mn-5m= m -5m -mn+5n

= (m -5m )+(-mn+5n)

=m(m-5)-n(m-5)

=(m-5)(m-n)

4、 十字相乘法

对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)

例4、分解因式7x -19x-6

分析: 1 -3

7 2

2-21=-19

解:7x -19x-6=(7x+2)(x-3)

5、配方法

对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x +3x-40

解x +3x-40=x +3x+( ) -( ) -40

=(x+ ) -( )

=(x+ + )(x+ - )

=(x+8)(x-5)

6、拆、添项法

可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)

解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

=c(c-a)(b+a)+b(a+b)(c-a)

=(c+b)(c-a)(a+b)

7、 换元法

有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

例7、分解因式2x -x -6x -x+2

解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x

=x [2(x + )-(x+ )-6

令y=x+ , x [2(x + )-(x+ )-6

= x [2(y -2)-y-6]

= x (2y -y-10)

=x (y+2)(2y-5)

=x (x+ +2)(2x+ -5)

= (x +2x+1) (2x -5x+2)

=(x+1) (2x-1)(x-2)

8、 求根法

令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )

例8、分解因式2x +7x -2x -13x+6

解:令f(x)=2x +7x -2x -13x+6=0

通过综合除法可知,f(x)=0根为 ,-3,-2,1

则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)

9、 图像法

令y=f(x),做出函数y=f(x)的图像,找到函数图像与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )

例9、因式分解x +2x -5x-6

解:令y= x +2x -5x-6

作出其图像,见右图,与x轴交点为-3,-1,2

则x +2x -5x-6=(x+1)(x+3)(x-2)

10、 主元法

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

例10、分解因式a (b-c)+b (c-a)+c (a-b)

分析:此题可选定a为主元,将其按次数从高到低排列

解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)

=(b-c) [a -a(b+c)+bc]

=(b-c)(a-b)(a-c)

11、 利用特殊值法

将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。

例11、分解因式x +9x +23x+15

解:令x=2,则x +9x +23x+15=8+36+46+15=105

将105分解成3个质因数的积,即105=3×5×7

注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值

则x +9x +23x+15=(x+1)(x+3)(x+5)

12、待定系数法

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

例12、分解因式x -x -5x -6x-4

分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。

解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d)

= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd

所以 解得

则x -x -5x -6x-4 =(x +x+1)(x -2x-4)

初学因式分解的“四个注意”

因式分解初见于九年义务教育三年制初中教材《代数》第二册,在初二上学期讲授,但它的内容却渗透于整个中学数学教材之中。学习它,既可以复习初一的整式四则运算,又为本册下一章分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。其中四个注意,则必须引起师生的高度重视。

因式分解中的四个注意散见于教材第5页和第15页,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举数例,说明如下,供参考。

例1 把-a2-b2+2ab+4分解因式。

解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2)

这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误?�膊荒芗�汉啪拖取疤帷保��匀�饨�蟹治觯?/p>

如例2 △abc的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证这个三角形是等腰三角形。

分析:此题实质上是对关系式的等号左边的多项式进行因式分解。

证明:∵-c2+a2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+2b+c)=0.

又∵a、b、c是△abc的三条边,∴a+2b+c>0,∴a-c=0,

即a=c,△abc为等腰三角形。

例3把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1)

这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。防止学生出现诸如6p(x-1)3-8p2(x-1)2+2p(1-x)2=2p(x-1)2〔3(x-1)-4p〕=2p(x-1)2(3x-4p-3)的错误。

例4 在实数范围内把x4-5x2-6分解因式。

解:x4-5x2-6=(x2+1)(x2-6)=(x2+1)(x+6)(x-6)

这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误。 1- 14 x2

4x –2 x2 – 2

( x- y )3 –(y- x)

x2 –y2 – x + y

x2 –y2 -1 ( x + y) (x – y )

x2 + 1 x2 -2-( x -1x )2

a3-a2-2a

4m2-9n2-4m+1

3a2+bc-3ac-ab

9-x2+2xy-y2

2x2-3x-1

-2x2+5xy+2y2

10a(x-y)2-5b(y-x)

an+1-4an+4an-1

x3(2x-y)-2x+y

x(6x-1)-1

2ax-10ay+5by+6x

1-a2-ab-14 b2

a4+4

(x2+x)(x2+x-3)+2

x5y-9xy5

-4x2+3xy+2y2

4a-a5

2x2-4x+1

4y2+4y-5

3X2-7X+2

8xy(x-y)-2(y-x)3

x6-y6

x3+2xy-x-xy2

(x+y)(x+y-1)-12

4ab-(1-a2)(1-b2)

-3m2-2m+4

a2-a-6

2(y-z)+81(z-y)

9m2-6m+2n-n2

ab(c2+d2)+cd(a2+b2)

a4-3a2-4

x4+4y4

a2+2ab+b2-2a-2b+1

x2-2x-4

4x2+8x-1

2x2+4xy+y2

- m2 – n2 + 2mn + 1

(a + b)3d – 4(a + b)2cd+4(a + b)c2d

(x + a)2 – (x – a)2

–x5y – xy +2x3y

x6 – x4 – x2 + 1

(x +3) (x +2) +x2 – 9

(x –y)3 +9(x – y) –6(x – y)2

(a2 + b2 –1 )2 – 4a2b2

(ax + by)2 + (bx – ay)2

x2 + 2ax – 3a2

3a3b2c-6a2b2c2+9ab2c3

xy+6-2x-3y

x2(x-y)+y2(y-x)

2x2-(a-2b)x-ab

a4-9a2b2

ab(x2-y2)+xy(a2-b2)

(x+y)(a-b-c)+(x-y)(b+c-a)

a2-a-b2-b

(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2

(a+3)2-6(a+3)

(x+1)2(x+2)-(x+1)(x+2)2

35.因式分解x2-25= 。

36.因式分解x2-20x+100= 。

37.因式分解x2+4x+3= 。

38.因式分解4x2-12x+5= 。

39.因式分解下列各式:

(1)3ax2-6ax= 。

(2)x(x+2)-x= 。

(3)x2-4x-ax+4a= 。

(4)25x2-49= 。

(5)36x2-60x+25= 。

(6)4x2+12x+9= 。

(7)x2-9x+18= 。

(8)2x2-5x-3= 。

(9)12x2-50x+8= 。

40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。

41.因式分解2ax2-3x+2ax-3= 。

42.因式分解9x2-66x+121= 。

43.因式分解8-2x2= 。

44.因式分解x2-x+14 = 。

45.因式分解9x2-30x+25= 。

46.因式分解-20x2+9x+20= 。

47.因式分解12x2-29x+15= 。

48.因式分解36x2+39x+9= 。

49.因式分解21x2-31x-22= 。

50.因式分解9x4-35x2-4= 。

51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。

52.因式分解2ax2-3x+2ax-3= 。

53.因式分解x(y+2)-x-y-1= 。

54.因式分解(x2-3x)+(x-3)2= 。

55.因式分解9x2-66x+121= 。

56.因式分解8-2x2= 。

57.因式分解x4-1= 。

58.因式分解x2+4x-xy-2y+4= 。

59.因式分解4x2-12x+5= 。

60.因式分解21x2-31x-22= 。

61.因式分解4x2+4xy+y2-4x-2y-3= 。

62.因式分解9x5-35x3-4x= 。

63.因式分解下列各式:

(1)3x2-6x= 。

(2)49x2-25= 。

(3)6x2-13x+5= 。

(4)x2+2-3x= 。

(5)12x2-23x-24= 。

(6)(x+6)(x-6)-(x-6)= 。

(7)3(x+2)(x-5)-(x+2)(x-3)= 。

(8)9x2+42x+49= 。

(1)(x+2)-2(x+2)2= 。

(2)36x2+39x+9= 。

(3)2x2+ax-6x-3a= 。

(4)22x2-31x-21= 。

70.因式分解3ax2-6ax= 。

71.因式分解(x+1)x-5x= 。

72.因式分解(2x+1)(x-3)-(2x+1)(x-5)=

73.因式分解xy+2x-5y-10=

74.因式分解x2y2-x2-y2-6xy+4=

x3+2x2+2x+1

a2b2-a2-b2+1

(1)3ax2-2x+3ax-2

(x2-3x)+(x-3)2+2x-6

1)(2x+3)(x-2)+(x+1)(2x+3)

9x2-66x+121

17.因式分解

(1)8x2-18 (2)x2-(a-b)x-ab

18.因式分解下列各式

(1)9x4+35x2-4 (2)x2-y2-2yz-z2

(3)a(b2-c2)-c(a2-b2)

19.因式分解(2x+1)(x+1)+(2x+1)(x-3)

20.因式分解39x2-38x+8

21.利用因式分解求(6512 )2-(3412 )2之值

22.因式分解a(b2-c2)-c(a2-b2)

24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2

25.因式分解xy2-2xy-3x-y2-2y-1

26.因式分解4x2-6ax+18a2

27.因式分解20a3bc-9a2b2c-20ab3c

28.因式分解2ax2-5x+2ax-5

29.因式分解4x3+4x2-25x-25

30.因式分解(1-xy)2-(y-x)2

31.因式分解

(1)mx2-m2-x+1 (2)a2-2ab+b2-1

32.因式分解下列各式

(1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2

33.因式分解:xy2-2xy-3x-y2-2y-1

34.因式分解y2(x-y)+z2(y-x)

1)因式分解x2+x+y2-y-2xy=

例1分解因式:x^15+m^12+m^9+m^6+m^3+1

解原式=(x^15+m^12)+(m^9+m^6)+(m^3+1)

=m^12(m^3+1)+m^6(m^3+1)+(m^3+1)

=(m^3+1)(m^12+m^6++1)

=(m^3+1)[(m^6+1)2-m^6]

=(m^+1)(m^2-m^+1)(m^6+1+m^3)(m^6+1-m^3)

例2分解因式:x^4+5x^3+15x-9

解析可根据系数特征进行分组

解原式=(x^4-9)+5x^3+15x

=(x^2+3)(x2-3)+5x(x^2+3)

=(x^2+3)(x^2+5x-3)

1.下列因式分解中,正确的是( )���������

(A) 1- 14 x2= 14 (x + 2) (x- 2) (B)4x –2 x2 – 2 = - 2(x- 1)2

(C) ( x- y )3 –(y- x) = (x – y) (x – y + 1) ( x –y – 1)

(D) x2 –y2 – x + y = ( x + y) (x – y – 1)

2.下列各等式(1) a2- b2 = (a + b) (a–b ),(2) x2–3x +2 = x(x–3) + 2

(3 ) 1 x2 –y2 -1 ( x + y) (x – y ) ,(4 )x2 + 1 x2 -2-( x -1x )2

从左到是因式分解的个数为( )

(A) 1 个 (B) 2 个 (C) 3 个 (D) 4个

3.若x2+mx+25 是一个完全平方式,则m的值是( )

(A) 20 (B) 10 (C) ± 20 (D) ±10

4.若x2+mx+n能分解成( x+2 ) (x – 5),则m= ,n= ;

5.若二次三项式2x2+x+5m在实数范围内能因式分解,则m= ;

6.若x2+kx-6有一个因式是(x-2),则k的值是 ;

7.把下列因式因式分解:

(1)a3-a2-2a (2)4m2-9n2-4m+1

(3)3a2+bc-3ac-ab (4)9-x2+2xy-y2

8.在实数范围内因式分解:

(1)2x2-3x-1 (2)-2x2+5xy+2y2

考点训练:

1. 分解下列因式:

(1).10a(x-y)2-5b(y-x) (2).an+1-4an+4an-1

(3).x3(2x-y)-2x+y (4).x(6x-1)-1

(5).2ax-10ay+5by+6x (6).1-a2-ab-14 b2

*(7).a4+4 (8).(x2+x)(x2+x-3)+2

(9).x5y-9xy5 (10).-4x2+3xy+2y2

(11).4a-a5 (12).2x2-4x+1

(13).4y2+4y-5 (14)3X2-7X+2

解题指导:

1.下列运算:(1) (a-3)2=a2-6a+9 (2) x-4=(x +2)( x -2)

(3) ax2+a2xy+a=a(x2+ax) (4) 116 x2-14 x+14 =x2-4x+4=(x-2)2其中是因式分解,且运算正确的个数是( )

(A)1 (B)2 (C)3 (D)4

2.不论a为何值,代数式-a2+4a-5值( )

(A)大于或等于0 (B)0 (C)大于0 (D)小于0

3.若x2+2(m-3)x+16 是一个完全平方式,则m的值是( )

(A)-5 (B)7 (C)-1 (D)7或-1

4.(x2+y2)(x2-1+y2)-12=0,则x2+y2的值是 ;

5.分解下列因式:

(1).8xy(x-y)-2(y-x)3 *(2).x6-y6

(3).x3+2xy-x-xy2 *(4).(x+y)(x+y-1)-12

(5).4ab-(1-a2)(1-b2) (6).-3m2-2m+4

*4。已知a+b=1,求a3+3ab+b3的值

5.a、b、c为⊿ABC三边,利用因式分解说明b2-a2+2ac-c2的符号

6.0<a≤5,a为整数,若2x2+3x+a能用十字相乘法分解因式,求符合条件的a

独立训练:

1.多项式x2-y2, x2-2xy+y2, x3-y3的公因式是 。

2.填上适当的数或式,使左边可分解为右边的结果:

(1)9x2-( )2=(3x+ )( -15 y), (2).5x2+6xy-8y2=(x )( -4y).

3.矩形的面积为6x2+13x+5 (x>0),其中一边长为2x+1,则另为 。

4.把a2-a-6分解因式,正确的是( )

(A)a(a-1)-6 (B)(a-2)(a+3) (C)(a+2)(a-3) (D)(a-1)(a+6)

5.多项式a2+4ab+2b2,a2-4ab+16b2,a2+a+14 ,9a2-12ab+4b2中,能用完全平方公式分解因式的有( )

(A) 1个 (B) 2个 (C) 3个 (D) 4个

6.设(x+y)(x+2+y)-15=0,则x+y的值是( )

(A)-5或3 (B) -3或5 (C)3 (D)5

7.关于的二次三项式x2-4x+c能分解成两个整系数的一次的积式,那么c可取下面四个值中的( )

(A) -8 (B) -7 (C) -6 (D) -5

8.若x2-mx+n=(x-4)(x+3) 则m,n的值为( )

(A) m=-1, n=-12 (B)m=-1,n=12 (C) m=1,n=-12 (D) m=1,n=12.

9.代数式y2+my+254 是一个完全平方式,则m的值是 。

10.已知2x2-3xy+y2=0(x,y均不为零),则 xy + yx 的值为 。

11.分解因式:

(1).x2(y-z)+81(z-y) (2).9m2-6m+2n-n2

*(3).ab(c2+d2)+cd(a2+b2) (4).a4-3a2-4

*(5).x4+4y4 *(6).a2+2ab+b2-2a-2b+1

12.实数范围内因式分解

(1)x2-2x-4 (2)4x2+8x-1 (3)2x2+4xy+y2

初二数学因式分解测试题

刘锦珍

一、 选择题:

1. 多项式15x3y4m2-35x4y2m2+20x3ym的各项公因式是( )

A 5x3y B 5x3ym C 5x3m D5x3m2y

2. 下列从左到右的变形中是因式分解的是( )

A (a+b)2=a2+2ab+b2 B x2-4x+5=(x-2x)2+1

C x2-5x-6=(x+6)(x-1) D x2-10x+25=(x-5)2

3. 若多项式x2+kxy+9y2是一个完全平方式,则k的值为( )

A 6 B 3 C -6 D -6或6

4. 把多项式a2+a-b2-b用分组分解法分解因式不同的分组方法有( )

A 1种 B 2种 C 3种 D 4种

5. 多项式a2+b2, x2-y2, -x2-y2, -a2+b2中,能分解因式的有( )

A 4个 B 3个 C 2个 D 1个

6. 如果多项式x2-mx-15能分解因式,则m的值为( )

A 2或-2 B 14或-14 C 2或-14 D ±2或±14

7. 下列各多项式中不含有因式 (x-1) 的是( )

A x3-x2-x+1 B x2+y-xy-x C x2-2x-y2+1 D (x2+3x)2-(2x+2)2

8. 若 则x为( )

A 1 B -1 C D -2

9. 若多项式4ab-4a2-b2-m有一个因式为(1-2a+b)则m的值为( )

A 0 B 1 C -1 D 4

10. 如果 (a2+b2-3) (a2+b2) -10 = 0那么a2+b2的值为( )

A -2 B 5 C 2 D -2或5

二、分解下列各式:

1、- m2 – n2 + 2mn + 1 2、(a + b)3d – 4(a + b)2cd+4(a + b)c2d

3. (x + a)2 – (x – a)2 4.

5. –x5y – xy +2x3y 6. x6 – x4 – x2 + 1

7. (x +3) (x +2) +x2 – 9 8. (x –y)3 +9(x – y) –6(x – y)2

9. (a2 + b2 –1 )2 – 4a2b2 10. (ax + by)2 + (bx – ay)2

三、 简便方法计算:

1. 2.

四、 化简求值:

1. 2ax2 – 8axy + 8ay2 – 2a 2. 已知:a2 – b2 – 5=0 c2 – d2 – 2 =0

其中x –2 y =1 a=3 求:(ac + bd)2 – (ad + bc)2的值

五、 观察下列分解因式的过程: 分解因式的方法,叫做 配方法。

x2 + 2ax – 3a2 请你用配方法分解因式:

=x2+2ax+a2 – a2 – 3a2 (先加上a2,再减去a2) m2 – 4mn +3n2

=(x+a)2 – 4a2 (运用完全平方公式)

=(x+a+2a) (x+a – 2a) (运用平方差公式)

=(x+3a) (x – a)

像上面这样通过加减项配出完全平方式把二次三项式

2. 填空

(1)(2m+n)(2m-n)=4m2-n2此运算属于 。

(2)x2-2x+1=(x-1)2此运算属于 。

(3)配完全平方式 49x2+y2+ =( -y)2

自主学习:

1. 993-99能被100整除吗?你是怎样想的?与同伴交流。

小时是这样做的?

993-99

=99×992-99×1

=99(992-1)

=99×9800

=98×99×100

所以,993-99能被100整除。

(1) 小明在判断993-99能否被100整除时是怎么做的?

(2) 993-99还能被哪些正整数整除。

答案:(1)小明将993-99通过分解因数的方法,说明993-99是100的倍数,故993-99能被100整除。

(2)还能被98,99,49,11等正整数整除。

2. 计算下列各式:

(1)(m+4)(m-4)= ;

(2)(y-3)2= ;

(3)3x(x-1)= ;

(4)m(a+b+c)= .

根据上面的算式填空:

(1)3x2-3x=( )( )

(2)m2-16=( )( )

(3)ma+mb+mc=( )( )

(4)y2-6y+9=( )( )

请问,通过以上两组练习的演练,你认为这两组练习之间有什么关系?

答案:第一组:

(1)m2-16;(2)y2-6y+9;(3)3x2-3x;(4)ma+mb+mc;

第二组:

(1)3x(x-1);(2)(m+4)(m-4);(3)m(a+b+c);(4)(y-3)2。

第一组是把多项式乘以多项式展开整理之后的结果,第二组是把多项式写成了几个固式的积的形式,它们这间恰好是一个互逆的关系。

3. 下列各式中由等号的左边到右边的变形,是因式分解的是( )

A.(x+3)(x-3)=x2-9 B.x2+x-5=(x-2)(x+3)+1

C.a2b+ab2=ab(a+b) D.

答案:C

4. 证明:一个三位数的百位数字与个位数字交换位置,则新数与原数之差能被99整除。

证明:设原数百位数字为x,十位数字为y,个位数字为z,则原数可表示为100x+10y+z,交换位置后数字为100 z +10y+ x。

则:(100 z +10y+ x)-(100x+10y+z)

=100 z-100x+x-z

=100(z-x)-(z-x)

=99(z-x)

则原结论成立。

5.(陕西省,中考题)如图3-1①所示,在边长为a的正方形中挖掉一个边长了b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②所示),通过教育处两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )

A.(a+2b)(a-b)=a2+ab-2b2 B.(a+b)2=a2+2ab+b2

C.(a-b)2=a2-2ab+b2 D.a2-b2=(a+b)(a-b)

答案:D。

§2.2提公因式法

教学目的和要求: 经历探索多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;会用提公因式法把多项式分解因式(多项式中的字母指数仅限于正整数的情况);进一步了解分解因式的意义,加强学生的直觉思维并渗透化归的思想方法.

教学重点和难点:

重点:是让学生理解提公因式的意义与原理。

难点:能确定多项式各项的公因式

关键:是让学生理解提公因式的意义与原理。

快速反应:

1. 2m2x+4mx2的公因式___________。

2. a2b+ab2+a3b3的公因式_____________。

3. 5m(a-b)+10n(b-a)的公因式____________。

4. -5xy-15xyz-20x2y=-5xy(____________).

自主学习:

1. 张老师准备给航天建模竞赛中获奖的同学颁发奖品。他来到文具商店,经过选择决定买单价16元的钢笔10支,5元一本的笔记本10本,4元一瓶的墨水10瓶,由于购买物品较多,商品售货员决定以9折出售,问共需多少钱。

关于这一问题两位同学给出了各自的做法。

方法一:16×10×90%+5×10×90%+4×10×90%=144+45+36=225(元)

方法二:16×10×90%+5×10×90%+4×10×90%=10×90%(16+5+4)=225(元)

请问:两位同学计算的方法哪一位更好?为什么?

答案:第二位同学(第二种方法)更好,因为第二种方法将因数10×90%放在括号外,只进行过一次计算,很明显减小计算量。

2. (1)多项式ab+bc各项都含有相同的因式吗?多项式3x2+x呢?多项式mb2+nb呢?

(2)将上面的多项式分别写成几个因式的乘积,说明你的理由,并与同位交流。

答案:(1)多项式ab+bc各项都含有相同的因式b,多项式3x2+x各项都含有相同的公因式x,多项mb2+nb各项都含有相同的公因式b。

3. 将下列各式分解因式:

3x+6; 7x2-21x; 8a3b2-12ab3c+abc; a(x-3)+2b(x-3); 5(x-y)3+10(y-x)2。

答案:(1)3x+6=3x+3×2=3(x+2) (2)7x2-21x=7x•x-7x•3=7x(x-3)

(3)8a3b2-12ab3c+abc=ab•8a2b-ab•12b2c+ab•c=ab(8a2b-12b2c+c)

(4)a(x-3)+2b(x-3)=(x-3)(a+2b)

(5)5(x-y)3+10(y-x)2=5(x-y)3+10[-(x-y)]2=5(x-y)3+10(x-y)2=5(x-y)2(x-y+2)

4. 把下列各式分解因式:

(1)3x2-6xy+x (2)-4m3+16m2-26m

答案:(1)3x2-6xy+x=x(3x-6y+1) (2)-4m3+16m2-26m=-2m(2m2-8m+13)

5. 把 分解因式

答案: =

6. 把下列各式分解因式:

(1) 4q(1-p)3+2(p-1)2

(2) 3m(x-y)-n(y-x)

(3) m(5ax+ay-1)-m(3ax-ay-1)

答案:(1)4q(1-p)3+2(p-1)2=2(1-p)2(2q-2pq+1)

(2)3m(x-y)-n(y-x)=(x-y)(3m+n)

(3)m(5ax+ay-1)-m(3ax-ay-1)=2am(x+y)

7. 计算

(1) 已知a+b=13,ab=40,求a2b+ab2的值;

(2) 1998+19982-19992

答案:(1)a2b+ab2=ab(a+b),当a+b=13时,原式=40×13=520

(2)1998+19982-19992=-1999

8. 比较2002×20032003与2003×20022002的大小。

解答:设2002=x

∵2002×20032003-2003×20022002=x•10001(x+1)-(x+1)•10001 x=0

∴2002×20032003=2003×20022002

§2.3运用公式法

教学目的和要求: 经历通过整式乘法的平方差公式、完全平方公式逆向得出用公式法分解因式的方法的过程,发展学生的逆向思维和推理能力;运用公式法(直接用公式不超过两次)分解因式(指数是正整数)

教学重点和难点:

重点:发展学生的逆向思维和推理能力

难点:能够理解、归纳因式分解变形的特点,同时也可以充分感受到这种互逆变形的过程和数学知识的整体性.

快速反应:

1. 分解因式:①x2-y2= ; x2-4= ;②a2b2-2ab+1= ; = ;

2. 下列多项式中能用平方差公式分解因式的是( )

A.16a2-25b3 B.-16a2-25b2 C.16a2+25b2 D.-(16a2-25b2)

3. 下列各式不能用完全平方公式分解的是( )

A.x2+y2+2xy B.-x2+y2+2xy C.-x2-y2-2xy D.-x2-y2+2xy

4. 把下列各式分解因式:

(1)9a2m2-16b2n2; (2) ; (3)9(a+b)2-12(a+b)+4 (4)

自主学习:

1. (1)观察多项式x2-25.9x-y2,它们有什么共同特证?

(2)将它们分别写成两个因式的乘积,说明你的理由,并与同伴交流。

答案:(1)多项式的各项都能写成平方的形式。如x2-25中:x2本身是平方的形式,25=52也是平方的形式;9x-y2也是如此。

(2)逆用乘法公式(a+b)(a-b)=a2-b2,可知x2-25= x2-52=(x+5)(x-5),9x2-y2=(3x)2-y2=(3x+y)(3x-y).

2. 把乘法方式

(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2,反过来,就得到 a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2

上面这个变化过程是分解因式吗?说明你的理由。

答案:a2±2ab+b2=(a±b)2是分解因式。因为(a+b)2是因式的乘积的形式,(a-b)2也是因式的乘积的形式。

3. 把下列各式分解因式:

(1)25-16x2; (2) (3)9(m+n)2-(m-n)2; (4)2x3-8x;

(5)x2+14x+49; (6)(m+m)2-6(m+n)+9(7)3ax2+6axy+3ay2; (8)-x2-4y2+4xy

答案:

(1)25-16x2=(5+4x)(5-4x) (2) =

(3)9(m+n)2-(m-n)2=4(2m+n)(m+2n)

(4)2x3-8x=2x(x2-4)=2x(x2-2x)=2x(x+2)(x-2)

(5)x2+14x+49= x2+2×7x+72=(x+7)2

(6)(m+m)2-6(m+n)+9=[(m+n)-3]2=(m+n-3)2

(7)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2

(8)-x2-4y2+4xy=-(x-2y)2

4. 把下列各式分解因式:

(1) ; (2)(a+b)2-1; (3)-(x+2)2+16(x-1)2;

(4)

答案: (1) ; (2)(a+b)2-1=(a+b+1)(a+b-1)

(3)-(x+2)2+16(x-1)2=3(x-2)(5x-2);

(4)

5. 把下列各式分解因式:

(1)m2-12m+36; (2)8a-4a2-4;

(3) ; (4) 。

答案:(1)m2-12m+36=(m-6)2; (2)8a-4a2-4=-4(a-1)2;

(3) ;

(4)

6. 求证(x+1)(x+2)(x+3)(x+4)+1是一个完全平方式。

证明一:原式=(x2+5x+4)(x2+5x+6)+1

=(x2+5x)2+10(x2+5x)+25

=(x2+5x+5)2 ∴原命题成立

证明二:原式=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)+1

令a=x2+5x+4,则x2+5x+6=a+2

原式=a(a+2)+1=(a+1)2

即(x+1)(x+2)(x+3)(x+4)+1=(x2+5x+5)2

证明三:原式=(x2+5x+4)(x2+5x+6)+1

原式=(x2+5x+5-1)(x2+5x+5+1)+1

=(m-1)(m+1)+1=m2=(x2+5x+5)2

7. 已知a,b,c是△ABC的三条边,且满足a2+b2+c2-ab-bc-ca=0试判断△ABC的形状。

答案:∵a2+b2+c2-ab-bc-ca=0

∴2a2+2b2+2c2-2ab-2bc-2ac=0

即a2-2ab+b2+b2-2bc+c2+a2-2ac+c2=0

∴(a-b) 2+(b-c) 2+(a-c) 2=0

∵(a-b) 2≥0,(b-c) 2≥0,(a-c) 2≥0

∴a-b=0,b-c=0,a-c=0

∴a=b,b=c,a=c

∴这个三角形是等边三角形.

8. 设x+2z=3y,试判断x2-9y2+4z2+4xz的值是不是定值?

答案:当x+2z=3y时,x2-9y2+4z2+4xz的值为定值0。

6. 求证(x+1)(x+2)(x+3)(x+4)+1是一个完全平方式。

证明一:原式=(x2+5x+4)(x2+5x+6)+1

=(x2+5x)2+10(x2+5x)+25

=(x2+5x+5)2 ∴原命题成立

证明二:原式=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)+1

令a=x2+5x+4,则x2+5x+6=a+2

原式=a(a+2)+1=(a+1)2

即(x+1)(x+2)(x+3)(x+4)+1=(x2+5x+5)2

证明三:原式=(x2+5x+4)(x2+5x+6)+1

原式=(x2+5x+5-1)(x2+5x+5+1)+1

=(m-1)(m+1)+1=m2=(x2+5x+5)2

1. 根据因式分解的概念,判断下列各等式哪些是因式分解,哪些不是,为什么?

(1)6abxy=2ab•3xy;

(2)

(3)(2x-1)•2=4x-2

(4)4x2-4x+1=4x(x-1)+1.

2. 填空

(1)(2m+n)(2m-n)=4m2-n2此运算属于 。

(2)x2-2x+1=(x-1)2此运算属于 。

(3)配完全平方式 49x2+y2+ =( -y)2

因式分解公式一览表

因式分解的公式是:

一、平方差公式

a^2一b^=(a+b)(a一b),

二、二数和的完全平方公式

a^2+2ab+b^2=(a+b)^2,

三、二数差的完全平方公式

a^2一2ab+b^2=(a一b)^2,

四、二数立方和的公式

a^3+b^3=(a+b)(a^2一ab+b^2)

五、二数立方差的公式

a^3一b^3=(a一b)(a^2+ab+b^2)

六、二数和的立方公式

a^3+3a^2b+3ab^2+b^3

=(a+b)^3,

七、二数差的立方公式

a^3一3a^2b+3ab^2一b^3

=(a一b)^3,

八、三个数的和的完全平方公式

a^2+b^2+c^2+2ab+2bc+2ca

=(a+b+c)^2。

免费下载这份资料?立即下载

求因式分解的所有方法及公式

因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法,十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。

注意四原则:

1.分解要彻底(是否有公因式,是否可用公式)

2.最后结果只有小括号

3.最后结果中多项式首项系数为正(例如:-3x2+x=x(-3x+1))不一定首项一定为正,如-2x-3xy-4xz=-x(2+3y+4z)

归纳方法:

1.提公因式法。

2.运用公式法。

3.拼凑法。

拼凑法实例

提取公因式法

各项都含有的公共的因式叫做这个多项式各项的公因式,公因式可以是单项式,也可以是多项式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提取公因式。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数字母取各项的相同的字母,而且各字母的指数取次数最低的。当各项的系数有分数时,公因式系数为各分数的最大公约数。如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。

口诀:找准公因式,一次要提尽,全家都搬走,留1把家守,提负要变号,变形看奇偶。

例如:-am+bm+cm=-(a-b-c)m

a(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y)。

注意:把

变成

不叫提公因式

公式法

如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫运用公式法。

平方差公式:

反过来为

完全平方公式:

反过来为

反过来为

注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。

两根式:

立方和公式:a3+b3=(a+b)(a2-ab+b2)

立方差公式:a3-b3=(a-b)(a2+ab+b2)

完全立方公式:a3±3a2b+3ab2±b3=(a±b)3

公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)

例如:a2+4ab+4b2 =(a+2b)2

1.分解因式技巧掌握:

①分解因式是多项式的恒等变形,要求等式左边必须是多项式。

②分解因式的结果必须是以乘积的形式表示。

③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数。

④分解因式必须分解到每个多项式因式都不能再分解为止。

注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

2.提公因式法基本步骤:

(1)找出公因式

(2)提公因式并确定另一个因式

①第一步找公因式可按照确定公因式的方法先确定系数再确定字母

②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式

③提完公因式后,另一因式的项数与原多项式的项数相同

解方程法

通过解方程来进行因式分解,如:

X2+2X+1=0 ,解,得X1=-1,X2=-1,就得到原式=(X+1)×(X+1)

3竞赛方法编辑

分组分解法

分组分解是解方程的一种简洁的方法,下面是这个方法的详细讲解。

能分组分解的多项式有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。

比如:

ax+ay+bx+by

=a(x+y)+b(x+y)

=(a+b)(x+y)

我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。

同样,这道题也可以这样做。

ax+ay+bx+by

=x(a+b)+y(a+b)

=(a+b)(x+y)

几道例题:

1. 5ax+5bx+3ay+3by

解法:=5x(a+b)+3y(a+b)=(5x+3y)(a+b)

说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。

2. x2-x-y2-y

解法:=(x2-y2)-(x+y)

=(x+y)(x-y)-(x+y)

=(x+y)(x-y-1)

利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。

十字相乘法

十字相乘法在解题时是一个很好用的方法,也很简单。

这种方法有两种情况。

①x2+(p+q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p+q)x+pq=(x+p)(x+q) .

例1:x2-2x-8

=(x-4)(x+2)

②kx2+mx+n型的式子的因式分解

如果有k=ab,n=cd,且有ad+bc=m时,那么kx2+mx+n=(ax+c)(bx+d).

例2:分解7x2-19x-6

图示如下:a=1 b=7 c=2 d=-3

因为 -3×7=-21,1×2=2,且-21+2=-19,

所以,原式=(7x+2)(x-3).

十字相乘法口诀:分二次项,分常数项,交叉相乘求和得一次项。

例3:6X2+7X+2

第1项二次项(6X2)拆分为:2×3

第3项常数项(2)拆分为:1×2

2(X) 3(X)

1 2

对角相乘:1×3+2×2得第2项一次项(7X)

纵向相乘,横向相加。

与之对应的还有双十字相乘法,也可以学一学。

拆添项法

这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。

例如:bc(b+c)+ca(c-a)-ab(a+b)

=bc(c-a+a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

=(bc+ca)(c-a)+(bc-ab)(a+b)

=c(c-a)(b+a)+b(a+b)(c-a)

=(c+b)(c-a)(a+b).

配方法

对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。

例如:x2+3x-40

=x2+3x+2.25-42.25

=(x+1.5)2-(6.5)2

=(x+8)(x-5).

因式定理

对于多项式f(x),如果f(a)=0,那么f(x)必含有因式x-a.

例如:f(x)=x2+5x+6,f(-2)=0,则可确定x+2是x2+5x+6的一个因式。(事实上,x2+5x+6=(x+2)(x+3).)

注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数

2.对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数

换元法

有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。注意:换元后勿忘还元。

例如在分解(x2+x+1)(x2+x+2)-12时,可以令y=x2+x,则

原式=(y+1)(y+2)-12

=y2+3y+2-12=y2+3y-10

=(y+5)(y-2)

=(x2+x+5)(x2+x-2)

=(x2+x+5)(x+2)(x-1).

综合除法

令多项式f(x)=0,求出其根为x1,x2,x3,……,xn,则该多项式可分解为f(x)=a(x-x1)(x-x2)(x-x3)……(x-xn) .

例如在分解2x4+7x3-2x2-13x+6时,令2x4 +7x3-2x2-13x+6=0,

则通过综合除法可知,该方程的根为0.5 ,-3,-2,1.

所以2x4+7x3-2x2-13x+6=(2x-1)(x+3)(x+2)(x-1).

令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1,x2,x3,……xn ,则多项式可因式分解为f(x)= f(x)=a(x-x1)(x-x2)(x-x3)……(x-xn).

与方法⑼相比,能避开解方程的繁琐,但是不够准确。

主元法

例如在分解x3+2x2-5x-6时,可以令y=x3+2x2-5x-6.

作出其图像,与x轴交点为-3,-1,2

则x3+2x2-5x-6=(x+1)(x+3)(x-2)

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

特殊值法

将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。

例如在分解x3+9x2+23x+15时,令x=2,则

x3+9x2+23x+15=8+36+46+15=105,

将105分解成3个质因数的积,即105=3×5×7 .

注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值,

则x3+9x2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。

待定系数法

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

例如在分解x4-x3-5x2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。

于是设x4-x3-5x2-6x-4=(x2+ax+b)(x2+cx+d)

相关公式

=x4+(a+c)x3+(ac+b+d)x2+(ad+bc)x+bd

由此可得

a+c=-1,

ac+b+d=-5,

ad+bc=-6,

bd=-4.

解得a=1,b=1,c=-2,d=-4.

则x4-x3-5x2-6x-4=(x2+x+1)(x2-2x-4).

也可以参看右图。

双十字相乘法

双十字相乘法属于因式分解的一类,类似于十字相乘法。

双十字相乘法就是二元二次六项式,启始的式子如下:

ax2+bxy+cy2+dx+ey+f

x、y为未知数,其余都是常数

用一道例题来说明如何使用。

例:分解因式:x2+5xy+6y2+8x+18y+12.

分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。

解:图如下,把所有的数字交叉相连即可

x  2y  2

x  3y  6

∴原式=(x+2y+2)(x+3y+6).

双十字相乘法其步骤为:

①先用十字相乘法分解2次项,如十字相乘图①中x2+5xy+6y2=(x+2y)(x+3y)

②先依一个字母(如y)的一次系数分数常数项。如十字相乘图②中6y2+18y+12=(2y+2)(3y+6)

③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错。

④纵向相乘,横向相加。

二次多项式

(根与系数关系二次多项式因式分解)

例:对于二次多项式 aX2+bX+c(a≠0)

当△=b2-4ac≥0时,设aX2+bX+c=0的解为X1,X2

=a(X2-(X1+X2)X+X1X2)

=a(X-X1)(X-X2).

4分解步骤编辑

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解

④分解因式,必须进行到每一个多项式因式都不能再分解为止。

也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。”

5例题编辑

1.分解因式(1+y)2-2x2(1+y2)+x4(1-y)2.

解:原式=(1+y)2+2(1+y)x2(1-y)+x4(1-y)2-2(1+y)x2(1-y)-2x2(1+y2)(补项)

=[(1+y)+x2(1-y)]2-2(1+y)x2(1-y)-2x2(1+y2)(完全平方)

=[(1+y)+x2(1-y)]2-(2x)2

=[(1+y)+x2(1-y)+2x][(1+y)+x2(1-y)-2x]

=(x2-x2y+2x+y+1)(x^2-x2y-2x+y+1)

=[(x+1)2-y(x2-1)][(x-1)2-y(x2-1)]

=[(x+1)2-y(x+1)(x-1)][(x-1)2-y(x+1)(x-1)]

=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y).

2.求证:对于任何整数x,y,下式的值都不会为33:

x5+3x4y-5x3y2-15x2y3+4xy4+12y5.

解:原式=(x5+3x4y)-(5x3y2+15x2y3)+(4xy4+12y5)

=x4(x+3y)-5x2y2(x+3y)+4y4(x+3y)

=(x+3y)(x4-5x2y2+4y4)

=(x+3y)(x2-4y2)(x2-y2)

=(x+3y)(x+y)(x-y)(x+2y)(x-2y).

当y=0时,原式=x5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。

3..△ABC的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证:这个三角形是等腰三角形。

分析:此题实质上是对关系式的等号左边的多项式进行因式分解。

证明:∵-c2+a2+2ab-2bc=0,

∴(a+c)(a-c)+2b(a-c)=0.

∴(a-c)(a+2b+c)=0.

∵a、b、c是△ABC的三条边,

∴a+2b+c>0.

∴a-c=0,

即a=c,△ABC为等腰三角形。

4.把-12x2n×yn+18xn+2yn+1-6xn×yn-1分解因式。

解:-12x2n×yn+18xn+2yn+1-6xn×yn-1

=-6xn×yn-1(2xn×y-3x2y2+1).

6四个注意编辑

因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举下例,可供参考。

例1 把-a2-b2+2ab+4分解因式。

解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-[(a-b)2-4]=-(a-b+2)(a-b-2)

这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误。

这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。

分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y(x+1)(4x2-9)的错误,因为4x2-9还可分解为(2x+3)(2x-3)。

考试时应注意:

在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数!

由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的。

7应用编辑

1. 应用于多项式除法。

:a(b−1)(ab+2b+a)

说明:(ab+b)2−(a+b)2 = (ab+b+a+b)(ab+b−a−b) = (ab+2b+a)(ab−a) = a(b−1)(ab+2b+a).

2. 应用于高次方程的求根。

3. 应用于分式的通分与约分

顺带一提,梅森合数分解已经取得一些微不足道的进展:

1,p=4r+3,如果8r+7也是素数,则:(8r+7)|(2P-1)。即(2p+1)|(2P-1)

例如:

23|(211-1);;11=4×2+3

47|(223-1);;23=4×5+3

167|(283-1);,,,.83=4×20+3

2,p=2n×32+1,,则(6p+1)|(2P-1),

例如:223|(237-1);37=2×2×3×3+1

439|(273-1);73=2×2×2×3×3+1

3463|(2577-1);577=2×2×2×2×2×2×3×3+1

3,p=2n×3m×5s-1,则(8p+1)|(2P-1)

例如;233|(229-1);29=2×3×5-1

1433|(2179-1);179=2×2×3×3×5-1

1913|(2239-1);239=2×2×2×2×3×5-1

8分解公式编辑

平方差公式

(a+b)(a-b)=a2-b2

完全平方公式

(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

立方和(差)

两数差乘以它们的平方和与它们的积的和等于两数的立方差。

即a3-b3=(a-b)(a2+ab+b2)

证明如下: a3-b3=a3-3a2b+3ab2-b3

所以a3-b3=(a-b)a3-[-3(a2)b+3ab2]=(a-b)(a-b)2+3ab(a-b)

=(a-b)(a2-2ab+b2+3ab)=(a-b)(a2+ab+b2)

同理 a3+b3=(a+b)(a2-ab+b2)

十字相乘公式

十字相乘法能把某些二次三项式分解因式。要务必注意各项系数的符号。

(x+a)(x+b)=x2+(a+b)x+ab 因式分解的十二种方法 :把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.因式分解的方法多种多样,现总结如下:1、 提公因法 如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来。

因式分解的练习题

⑴提公因式法

①公因式:各项都含有的公共的因式叫做这个多项式各项的~.

②提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.

am+bm+cm=m(a+b+c)

③具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的. 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数是正的.

⑵运用公式法

①平方差公式:. a^2-b^2=(a+b)(a-b)

②完全平方公式: a^2±2ab+b^2=(a±b)^2

※能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.

③立方和公式:a^3+b^3= (a+b)(a^2-ab+b^2).

立方差公式:a^3-b^3= (a-b)(a^2+ab+b^2).

④完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3

⑤a^n-b^n=(a-b)[a^(n-1)+a^(n-2)b+……+b^(n-2)a+b^(n-1)]

a^m+b^m=(a+b)[a^(m-1)-a^(m-2)b+……-b^(m-2)a+b^(m-1)](m为奇数)

⑶分组分解法

分组分解法:把一个多项式分组后,再进行分解因式的方法.

分组分解法必须有明确目的,即分组后,可以直接提公因式或运用公式.

⑷拆项、补项法

拆项、补项法:把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解;要注意,必须在与原多项式相等的原则进行变形.

⑸十字相乘法

①x^2+(p q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分解: x^2+(p q)x+pq=(x+p)(x+q)

②kx^2+mx+n型的式子的因式分解

如果能够分解成k=ac,n=bd,且有ad+bc=m 时,那么

kx^2+mx+n=(ax b)(cx d)

a \-----/b ac=k bd=n

c /-----\d ad+bc=m

※ 多项式因式分解的一般步骤:

①如果多项式的各项有公因式,那么先提公因式;

②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;

③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解;

④分解因式,必须进行到每一个多项式因式都不能再分解为止.

(6)应用因式定理:如果f(a)=0,则f(x)必含有因式(x-a)。如f(x)=x^2+5x+6,f(-2)=0,则可确定(x+2)是x^2+5x+6的一个因式。

经典例题:

1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2

解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)

=[(1+y)+x^2(1-y)]^2-(2x)^2

=[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x]

=(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1)

=[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)]

=(x+1)(x+1-xy+y)(x-1)(x-1-xy-y)

2.证明:对于任何数x,y,下式的值都不会为33

x^5+3x^4y-5x^3y^2+4xy^4+12y^5

解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5)

=x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y)

=(x+3y)(x^4-5x^2y^2+4y^4)

=(x+3y)(x^2-4y^2)(x^2-y^2)

=(x+3y)(x+y)(x-y)(x+2y)(x-2y)

当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立

因式分解的十二种方法

把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。因式分解的方法多种多样,现总结如下:

1、 提公因法

如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1、 分解因式x -2x -x(2003淮安市中考题)

x -2x -x=x(x -2x-1)

2、 应用公式法

由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

例2、分解因式a +4ab+4b (2003南通市中考题)

解:a +4ab+4b =(a+2b)

3、 分组分解法

要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)

例3、分解因式m +5n-mn-5m

解:m +5n-mn-5m= m -5m -mn+5n

= (m -5m )+(-mn+5n)

=m(m-5)-n(m-5)

=(m-5)(m-n)

4、 十字相乘法

对于mx +px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)

例4、分解因式7x -19x-6

分析: 1 -3

7 2

2-21=-19

解:7x -19x-6=(7x+2)(x-3)

5、配方法

对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

例5、分解因式x +3x-40

解x +3x-40=x +3x+( ) -( ) -40

=(x+ ) -( )

=(x+ + )(x+ - )

=(x+8)(x-5)

6、拆、添项法

可以把多项式拆成若干部分,再用进行因式分解。

例6、分解因式bc(b+c)+ca(c-a)-ab(a+b)

解:bc(b+c)+ca(c-a)-ab(a+b)=bc(c-a+a+b)+ca(c-a)-ab(a+b)

=bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b)

=c(c-a)(b+a)+b(a+b)(c-a)

=(c+b)(c-a)(a+b)

7、 换元法

有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来。

例7、分解因式2x -x -6x -x+2

解:2x -x -6x -x+2=2(x +1)-x(x +1)-6x

=x [2(x + )-(x+ )-6

令y=x+ , x [2(x + )-(x+ )-6

= x [2(y -2)-y-6]

= x (2y -y-10)

=x (y+2)(2y-5)

=x (x+ +2)(2x+ -5)

= (x +2x+1) (2x -5x+2)

=(x+1) (2x-1)(x-2)

8、 求根法

令多项式f(x)=0,求出其根为x ,x ,x ,……x ,则多项式可因式分解为f(x)=(x-x )(x-x )(x-x )……(x-x )

例8、分解因式2x +7x -2x -13x+6

解:令f(x)=2x +7x -2x -13x+6=0

通过综合除法可知,f(x)=0根为 ,-3,-2,1

则2x +7x -2x -13x+6=(2x-1)(x+3)(x+2)(x-1)

9、 图像法

令y=f(x),做出函数y=f(x)的图像,找到函数图像与X轴的交点x ,x ,x ,……x ,则多项式可因式分解为f(x)= f(x)=(x-x )(x-x )(x-x )……(x-x )

例9、因式分解x +2x -5x-6

解:令y= x +2x -5x-6

作出其图像,见右图,与x轴交点为-3,-1,2

则x +2x -5x-6=(x+1)(x+3)(x-2)

10、 主元法

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

例10、分解因式a (b-c)+b (c-a)+c (a-b)

分析:此题可选定a为主元,将其按次数从高到低排列

解:a (b-c)+b (c-a)+c (a-b)=a (b-c)-a(b -c )+(b c-c b)

=(b-c) [a -a(b+c)+bc]

=(b-c)(a-b)(a-c)

11、 利用特殊值法

将2或10代入x,求出数P,将数P分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。

例11、分解因式x +9x +23x+15

解:令x=2,则x +9x +23x+15=8+36+46+15=105

将105分解成3个质因数的积,即105=3×5×7

注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值

则x +9x +23x+15=(x+1)(x+3)(x+5)

12、待定系数法

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。

例12、分解因式x -x -5x -6x-4

分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。

解:设x -x -5x -6x-4=(x +ax+b)(x +cx+d)

= x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd

所以 解得

则x -x -5x -6x-4 =(x +x+1)(x -2x-4)

初学因式分解的“四个注意”

因式分解初见于九年义务教育三年制初中教材《代数》第二册,在初二上学期讲授,但它的内容却渗透于整个中学数学教材之中。学习它,既可以复习初一的整式四则运算,又为本册下一章分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。其中四个注意,则必须引起师生的高度重视。

因式分解中的四个注意散见于教材第5页和第15页,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。现举数例,说明如下,供参考。

例1 把-a2-b2+2ab+4分解因式。

解:-a2-b2+2ab+4=-(a2-2ab+b2-4)=-(a-b+2)(a-b-2)

这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如-9x2+4y2=(-3x)2-(2y)2=(-3x+2y)(-3x-2y)=(3x-2y)(3x+2y)的错误?�膊荒芗�汉啪拖取疤帷保��匀�饨�蟹治觯?/p>

如例2 △abc的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证这个三角形是等腰三角形。

分析:此题实质上是对关系式的等号左边的多项式进行因式分解。

证明:∵-c2+a2+2ab-2bc=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+2b+c)=0.

又∵a、b、c是△abc的三条边,∴a+2b+c>0,∴a-c=0,

即a=c,△abc为等腰三角形。

例3把-12x2nyn+18xn+2yn+1-6xnyn-1分解因式。解:-12x2nyn+18xn+2yn+1-6xnyn-1=-6xnyn-1(2xny-3x2y2+1)

这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。防止学生出现诸如6p(x-1)3-8p2(x-1)2+2p(1-x)2=2p(x-1)2〔3(x-1)-4p〕=2p(x-1)2(3x-4p-3)的错误。

例4 在实数范围内把x4-5x2-6分解因式。

解:x4-5x2-6=(x2+1)(x2-6)=(x2+1)(x+6)(x-6)

这里的“底”,指分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y2-5x2y2-9y2=y2(4x4-5x2-9)=y2(x2+1)(4x2-9)的错误。 1- 14 x2

4x –2 x2 – 2

( x- y )3 –(y- x)

x2 –y2 – x + y

x2 –y2 -1 ( x + y) (x – y )

x2 + 1 x2 -2-( x -1x )2

a3-a2-2a

4m2-9n2-4m+1

3a2+bc-3ac-ab

9-x2+2xy-y2

2x2-3x-1

-2x2+5xy+2y2

10a(x-y)2-5b(y-x)

an+1-4an+4an-1

x3(2x-y)-2x+y

x(6x-1)-1

2ax-10ay+5by+6x

1-a2-ab-14 b2

a4+4

(x2+x)(x2+x-3)+2

x5y-9xy5

-4x2+3xy+2y2

4a-a5

2x2-4x+1

4y2+4y-5

3X2-7X+2

8xy(x-y)-2(y-x)3

x6-y6

x3+2xy-x-xy2

(x+y)(x+y-1)-12

4ab-(1-a2)(1-b2)

-3m2-2m+4

a2-a-6

2(y-z)+81(z-y)

9m2-6m+2n-n2

ab(c2+d2)+cd(a2+b2)

a4-3a2-4

x4+4y4

a2+2ab+b2-2a-2b+1

x2-2x-4

4x2+8x-1

2x2+4xy+y2

- m2 – n2 + 2mn + 1

(a + b)3d – 4(a + b)2cd+4(a + b)c2d

(x + a)2 – (x – a)2

–x5y – xy +2x3y

x6 – x4 – x2 + 1

(x +3) (x +2) +x2 – 9

(x –y)3 +9(x – y) –6(x – y)2

(a2 + b2 –1 )2 – 4a2b2

(ax + by)2 + (bx – ay)2

x2 + 2ax – 3a2

3a3b2c-6a2b2c2+9ab2c3

xy+6-2x-3y

x2(x-y)+y2(y-x)

2x2-(a-2b)x-ab

a4-9a2b2

ab(x2-y2)+xy(a2-b2)

(x+y)(a-b-c)+(x-y)(b+c-a)

a2-a-b2-b

(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2

(a+3)2-6(a+3)

(x+1)2(x+2)-(x+1)(x+2)2

35.因式分解x2-25= 。

36.因式分解x2-20x+100= 。

37.因式分解x2+4x+3= 。

38.因式分解4x2-12x+5= 。

39.因式分解下列各式:

(1)3ax2-6ax= 。

(2)x(x+2)-x= 。

(3)x2-4x-ax+4a= 。

(4)25x2-49= 。

(5)36x2-60x+25= 。

(6)4x2+12x+9= 。

(7)x2-9x+18= 。

(8)2x2-5x-3= 。

(9)12x2-50x+8= 。

40.因式分解(x+2)(x-3)+(x+2)(x+4)= 。

41.因式分解2ax2-3x+2ax-3= 。

42.因式分解9x2-66x+121= 。

43.因式分解8-2x2= 。

44.因式分解x2-x+14 = 。

45.因式分解9x2-30x+25= 。

46.因式分解-20x2+9x+20= 。

47.因式分解12x2-29x+15= 。

48.因式分解36x2+39x+9= 。

49.因式分解21x2-31x-22= 。

50.因式分解9x4-35x2-4= 。

51.因式分解(2x+1)(x+1)+(2x+1)(x-3)= 。

52.因式分解2ax2-3x+2ax-3= 。

53.因式分解x(y+2)-x-y-1= 。

54.因式分解(x2-3x)+(x-3)2= 。

55.因式分解9x2-66x+121= 。

56.因式分解8-2x2= 。

57.因式分解x4-1= 。

58.因式分解x2+4x-xy-2y+4= 。

59.因式分解4x2-12x+5= 。

60.因式分解21x2-31x-22= 。

61.因式分解4x2+4xy+y2-4x-2y-3= 。

62.因式分解9x5-35x3-4x= 。

63.因式分解下列各式:

(1)3x2-6x= 。

(2)49x2-25= 。

(3)6x2-13x+5= 。

(4)x2+2-3x= 。

(5)12x2-23x-24= 。

(6)(x+6)(x-6)-(x-6)= 。

(7)3(x+2)(x-5)-(x+2)(x-3)= 。

(8)9x2+42x+49= 。

(1)(x+2)-2(x+2)2= 。

(2)36x2+39x+9= 。

(3)2x2+ax-6x-3a= 。

(4)22x2-31x-21= 。

70.因式分解3ax2-6ax= 。

71.因式分解(x+1)x-5x= 。

72.因式分解(2x+1)(x-3)-(2x+1)(x-5)=

73.因式分解xy+2x-5y-10=

74.因式分解x2y2-x2-y2-6xy+4=

x3+2x2+2x+1

a2b2-a2-b2+1

(1)3ax2-2x+3ax-2

(x2-3x)+(x-3)2+2x-6

1)(2x+3)(x-2)+(x+1)(2x+3)

9x2-66x+121

17.因式分解

(1)8x2-18 (2)x2-(a-b)x-ab

18.因式分解下列各式

(1)9x4+35x2-4 (2)x2-y2-2yz-z2

(3)a(b2-c2)-c(a2-b2)

19.因式分解(2x+1)(x+1)+(2x+1)(x-3)

20.因式分解39x2-38x+8

21.利用因式分解求(6512 )2-(3412 )2之值

22.因式分解a(b2-c2)-c(a2-b2)

24.因式分解7(x-1)2+4(x-1)(y+2)-20(y+2)2

25.因式分解xy2-2xy-3x-y2-2y-1

26.因式分解4x2-6ax+18a2

27.因式分解20a3bc-9a2b2c-20ab3c

28.因式分解2ax2-5x+2ax-5

29.因式分解4x3+4x2-25x-25

30.因式分解(1-xy)2-(y-x)2

31.因式分解

(1)mx2-m2-x+1 (2)a2-2ab+b2-1

32.因式分解下列各式

(1)5x2-45 (2)81x3-9x (3)x2-y2-5x-5y (4)x2-y2+2yz-z2

33.因式分解:xy2-2xy-3x-y2-2y-1

34.因式分解y2(x-y)+z2(y-x)

1)因式分解x2+x+y2-y-2xy=

例1分解因式:x^15+m^12+m^9+m^6+m^3+1

解原式=(x^15+m^12)+(m^9+m^6)+(m^3+1)

=m^12(m^3+1)+m^6(m^3+1)+(m^3+1)

=(m^3+1)(m^12+m^6++1)

=(m^3+1)[(m^6+1)2-m^6]

=(m^+1)(m^2-m^+1)(m^6+1+m^3)(m^6+1-m^3)

例2分解因式:x^4+5x^3+15x-9

解析可根据系数特征进行分组

解原式=(x^4-9)+5x^3+15x

=(x^2+3)(x2-3)+5x(x^2+3)

=(x^2+3)(x^2+5x-3)

1.下列因式分解中,正确的是( )���������

(A) 1- 14 x2= 14 (x + 2) (x- 2) (B)4x –2 x2 – 2 = - 2(x- 1)2

(C) ( x- y )3 –(y- x) = (x – y) (x – y + 1) ( x –y – 1)

(D) x2 –y2 – x + y = ( x + y) (x – y – 1)

2.下列各等式(1) a2- b2 = (a + b) (a–b ),(2) x2–3x +2 = x(x–3) + 2

(3 ) 1 x2 –y2 -1 ( x + y) (x – y ) ,(4 )x2 + 1 x2 -2-( x -1x )2

从左到是因式分解的个数为( )

(A) 1 个 (B) 2 个 (C) 3 个 (D) 4个

3.若x2+mx+25 是一个完全平方式,则m的值是( )

(A) 20 (B) 10 (C) ± 20 (D) ±10

4.若x2+mx+n能分解成( x+2 ) (x – 5),则m= ,n= ;

5.若二次三项式2x2+x+5m在实数范围内能因式分解,则m= ;

6.若x2+kx-6有一个因式是(x-2),则k的值是 ;

7.把下列因式因式分解:

(1)a3-a2-2a (2)4m2-9n2-4m+1

(3)3a2+bc-3ac-ab (4)9-x2+2xy-y2

8.在实数范围内因式分解:

(1)2x2-3x-1 (2)-2x2+5xy+2y2

考点训练:

1. 分解下列因式:

(1).10a(x-y)2-5b(y-x) (2).an+1-4an+4an-1

(3).x3(2x-y)-2x+y (4).x(6x-1)-1

(5).2ax-10ay+5by+6x (6).1-a2-ab-14 b2

*(7).a4+4 (8).(x2+x)(x2+x-3)+2

(9).x5y-9xy5 (10).-4x2+3xy+2y2

(11).4a-a5 (12).2x2-4x+1

(13).4y2+4y-5 (14)3X2-7X+2

解题指导:

1.下列运算:(1) (a-3)2=a2-6a+9 (2) x-4=(x +2)( x -2)

(3) ax2+a2xy+a=a(x2+ax) (4) 116 x2-14 x+14 =x2-4x+4=(x-2)2其中是因式分解,且运算正确的个数是( )

(A)1 (B)2 (C)3 (D)4

2.不论a为何值,代数式-a2+4a-5值( )

(A)大于或等于0 (B)0 (C)大于0 (D)小于0

3.若x2+2(m-3)x+16 是一个完全平方式,则m的值是( )

(A)-5 (B)7 (C)-1 (D)7或-1

4.(x2+y2)(x2-1+y2)-12=0,则x2+y2的值是 ;

5.分解下列因式:

(1).8xy(x-y)-2(y-x)3 *(2).x6-y6

(3).x3+2xy-x-xy2 *(4).(x+y)(x+y-1)-12

(5).4ab-(1-a2)(1-b2) (6).-3m2-2m+4

*4。已知a+b=1,求a3+3ab+b3的值

5.a、b、c为⊿ABC三边,利用因式分解说明b2-a2+2ac-c2的符号

6.0<a≤5,a为整数,若2x2+3x+a能用十字相乘法分解因式,求符合条件的a

独立训练:

1.多项式x2-y2, x2-2xy+y2, x3-y3的公因式是 。

2.填上适当的数或式,使左边可分解为右边的结果:

(1)9x2-( )2=(3x+ )( -15 y), (2).5x2+6xy-8y2=(x )( -4y).

3.矩形的面积为6x2+13x+5 (x>0),其中一边长为2x+1,则另为 。

4.把a2-a-6分解因式,正确的是( )

(A)a(a-1)-6 (B)(a-2)(a+3) (C)(a+2)(a-3) (D)(a-1)(a+6)

5.多项式a2+4ab+2b2,a2-4ab+16b2,a2+a+14 ,9a2-12ab+4b2中,能用完全平方公式分解因式的有( )

(A) 1个 (B) 2个 (C) 3个 (D) 4个

6.设(x+y)(x+2+y)-15=0,则x+y的值是( )

(A)-5或3 (B) -3或5 (C)3 (D)5

7.关于的二次三项式x2-4x+c能分解成两个整系数的一次的积式,那么c可取下面四个值中的( )

(A) -8 (B) -7 (C) -6 (D) -5

8.若x2-mx+n=(x-4)(x+3) 则m,n的值为( )

(A) m=-1, n=-12 (B)m=-1,n=12 (C) m=1,n=-12 (D) m=1,n=12.

9.代数式y2+my+254 是一个完全平方式,则m的值是 。

10.已知2x2-3xy+y2=0(x,y均不为零),则 xy + yx 的值为 。

11.分解因式:

(1).x2(y-z)+81(z-y) (2).9m2-6m+2n-n2

*(3).ab(c2+d2)+cd(a2+b2) (4).a4-3a2-4

*(5).x4+4y4 *(6).a2+2ab+b2-2a-2b+1

12.实数范围内因式分解

(1)x2-2x-4 (2)4x2+8x-1 (3)2x2+4xy+y2

初二数学因式分解测试题

刘锦珍

一、 选择题:

1. 多项式15x3y4m2-35x4y2m2+20x3ym的各项公因式是( )

A 5x3y B 5x3ym C 5x3m D5x3m2y

2. 下列从左到右的变形中是因式分解的是( )

A (a+b)2=a2+2ab+b2 B x2-4x+5=(x-2x)2+1

C x2-5x-6=(x+6)(x-1) D x2-10x+25=(x-5)2

3. 若多项式x2+kxy+9y2是一个完全平方式,则k的值为( )

A 6 B 3 C -6 D -6或6

4. 把多项式a2+a-b2-b用分组分解法分解因式不同的分组方法有( )

A 1种 B 2种 C 3种 D 4种

5. 多项式a2+b2, x2-y2, -x2-y2, -a2+b2中,能分解因式的有( )

A 4个 B 3个 C 2个 D 1个

6. 如果多项式x2-mx-15能分解因式,则m的值为( )

A 2或-2 B 14或-14 C 2或-14 D ±2或±14

7. 下列各多项式中不含有因式 (x-1) 的是( )

A x3-x2-x+1 B x2+y-xy-x C x2-2x-y2+1 D (x2+3x)2-(2x+2)2

8. 若 则x为( )

A 1 B -1 C D -2

9. 若多项式4ab-4a2-b2-m有一个因式为(1-2a+b)则m的值为( )

A 0 B 1 C -1 D 4

10. 如果 (a2+b2-3) (a2+b2) -10 = 0那么a2+b2的值为( )

A -2 B 5 C 2 D -2或5

二、分解下列各式:

1、- m2 – n2 + 2mn + 1 2、(a + b)3d – 4(a + b)2cd+4(a + b)c2d

3. (x + a)2 – (x – a)2 4.

5. –x5y – xy +2x3y 6. x6 – x4 – x2 + 1

7. (x +3) (x +2) +x2 – 9 8. (x –y)3 +9(x – y) –6(x – y)2

9. (a2 + b2 –1 )2 – 4a2b2 10. (ax + by)2 + (bx – ay)2

三、 简便方法计算:

1. 2.

四、 化简求值:

1. 2ax2 – 8axy + 8ay2 – 2a 2. 已知:a2 – b2 – 5=0 c2 – d2 – 2 =0

其中x –2 y =1 a=3 求:(ac + bd)2 – (ad + bc)2的值

五、 观察下列分解因式的过程: 分解因式的方法,叫做 配方法。

x2 + 2ax – 3a2 请你用配方法分解因式:

=x2+2ax+a2 – a2 – 3a2 (先加上a2,再减去a2) m2 – 4mn +3n2

=(x+a)2 – 4a2 (运用完全平方公式)

=(x+a+2a) (x+a – 2a) (运用平方差公式)

=(x+3a) (x – a)

像上面这样通过加减项配出完全平方式把二次三项式

2. 填空

(1)(2m+n)(2m-n)=4m2-n2此运算属于 。

(2)x2-2x+1=(x-1)2此运算属于 。

(3)配完全平方式 49x2+y2+ =( -y)2

自主学习:

1. 993-99能被100整除吗?你是怎样想的?与同伴交流。

小时是这样做的?

993-99

=99×992-99×1

=99(992-1)

=99×9800

=98×99×100

所以,993-99能被100整除。

(1) 小明在判断993-99能否被100整除时是怎么做的?

(2) 993-99还能被哪些正整数整除。

答案:(1)小明将993-99通过分解因数的方法,说明993-99是100的倍数,故993-99能被100整除。

(2)还能被98,99,49,11等正整数整除。

2. 计算下列各式:

(1)(m+4)(m-4)= ;

(2)(y-3)2= ;

(3)3x(x-1)= ;

(4)m(a+b+c)= .

根据上面的算式填空:

(1)3x2-3x=( )( )

(2)m2-16=( )( )

(3)ma+mb+mc=( )( )

(4)y2-6y+9=( )( )

请问,通过以上两组练习的演练,你认为这两组练习之间有什么关系?

答案:第一组:

(1)m2-16;(2)y2-6y+9;(3)3x2-3x;(4)ma+mb+mc;

第二组:

(1)3x(x-1);(2)(m+4)(m-4);(3)m(a+b+c);(4)(y-3)2。

第一组是把多项式乘以多项式展开整理之后的结果,第二组是把多项式写成了几个固式的积的形式,它们这间恰好是一个互逆的关系。

3. 下列各式中由等号的左边到右边的变形,是因式分解的是( )

A.(x+3)(x-3)=x2-9 B.x2+x-5=(x-2)(x+3)+1

C.a2b+ab2=ab(a+b) D.

答案:C

4. 证明:一个三位数的百位数字与个位数字交换位置,则新数与原数之差能被99整除。

证明:设原数百位数字为x,十位数字为y,个位数字为z,则原数可表示为100x+10y+z,交换位置后数字为100 z +10y+ x。

则:(100 z +10y+ x)-(100x+10y+z)

=100 z-100x+x-z

=100(z-x)-(z-x)

=99(z-x)

则原结论成立。

5.(陕西省,中考题)如图3-1①所示,在边长为a的正方形中挖掉一个边长了b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②所示),通过教育处两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( )

A.(a+2b)(a-b)=a2+ab-2b2 B.(a+b)2=a2+2ab+b2

C.(a-b)2=a2-2ab+b2 D.a2-b2=(a+b)(a-b)

答案:D。

§2.2提公因式法

教学目的和要求: 经历探索多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;会用提公因式法把多项式分解因式(多项式中的字母指数仅限于正整数的情况);进一步了解分解因式的意义,加强学生的直觉思维并渗透化归的思想方法.

教学重点和难点:

重点:是让学生理解提公因式的意义与原理。

难点:能确定多项式各项的公因式

关键:是让学生理解提公因式的意义与原理。

快速反应:

1. 2m2x+4mx2的公因式___________。

2. a2b+ab2+a3b3的公因式_____________。

3. 5m(a-b)+10n(b-a)的公因式____________。

4. -5xy-15xyz-20x2y=-5xy(____________).

自主学习:

1. 张老师准备给航天建模竞赛中获奖的同学颁发奖品。他来到文具商店,经过选择决定买单价16元的钢笔10支,5元一本的笔记本10本,4元一瓶的墨水10瓶,由于购买物品较多,商品售货员决定以9折出售,问共需多少钱。

关于这一问题两位同学给出了各自的做法。

方法一:16×10×90%+5×10×90%+4×10×90%=144+45+36=225(元)

方法二:16×10×90%+5×10×90%+4×10×90%=10×90%(16+5+4)=225(元)

请问:两位同学计算的方法哪一位更好?为什么?

答案:第二位同学(第二种方法)更好,因为第二种方法将因数10×90%放在括号外,只进行过一次计算,很明显减小计算量。

2. (1)多项式ab+bc各项都含有相同的因式吗?多项式3x2+x呢?多项式mb2+nb呢?

(2)将上面的多项式分别写成几个因式的乘积,说明你的理由,并与同位交流。

答案:(1)多项式ab+bc各项都含有相同的因式b,多项式3x2+x各项都含有相同的公因式x,多项mb2+nb各项都含有相同的公因式b。

3. 将下列各式分解因式:

3x+6; 7x2-21x; 8a3b2-12ab3c+abc; a(x-3)+2b(x-3); 5(x-y)3+10(y-x)2。

答案:(1)3x+6=3x+3×2=3(x+2) (2)7x2-21x=7x•x-7x•3=7x(x-3)

(3)8a3b2-12ab3c+abc=ab•8a2b-ab•12b2c+ab•c=ab(8a2b-12b2c+c)

(4)a(x-3)+2b(x-3)=(x-3)(a+2b)

(5)5(x-y)3+10(y-x)2=5(x-y)3+10[-(x-y)]2=5(x-y)3+10(x-y)2=5(x-y)2(x-y+2)

4. 把下列各式分解因式:

(1)3x2-6xy+x (2)-4m3+16m2-26m

答案:(1)3x2-6xy+x=x(3x-6y+1) (2)-4m3+16m2-26m=-2m(2m2-8m+13)

5. 把 分解因式

答案: =

6. 把下列各式分解因式:

(1) 4q(1-p)3+2(p-1)2

(2) 3m(x-y)-n(y-x)

(3) m(5ax+ay-1)-m(3ax-ay-1)

答案:(1)4q(1-p)3+2(p-1)2=2(1-p)2(2q-2pq+1)

(2)3m(x-y)-n(y-x)=(x-y)(3m+n)

(3)m(5ax+ay-1)-m(3ax-ay-1)=2am(x+y)

7. 计算

(1) 已知a+b=13,ab=40,求a2b+ab2的值;

(2) 1998+19982-19992

答案:(1)a2b+ab2=ab(a+b),当a+b=13时,原式=40×13=520

(2)1998+19982-19992=-1999

8. 比较2002×20032003与2003×20022002的大小。

解答:设2002=x

∵2002×20032003-2003×20022002=x•10001(x+1)-(x+1)•10001 x=0

∴2002×20032003=2003×20022002

§2.3运用公式法

教学目的和要求: 经历通过整式乘法的平方差公式、完全平方公式逆向得出用公式法分解因式的方法的过程,发展学生的逆向思维和推理能力;运用公式法(直接用公式不超过两次)分解因式(指数是正整数)

教学重点和难点:

重点:发展学生的逆向思维和推理能力

难点:能够理解、归纳因式分解变形的特点,同时也可以充分感受到这种互逆变形的过程和数学知识的整体性.

快速反应:

1. 分解因式:①x2-y2= ; x2-4= ;②a2b2-2ab+1= ; = ;

2. 下列多项式中能用平方差公式分解因式的是( )

A.16a2-25b3 B.-16a2-25b2 C.16a2+25b2 D.-(16a2-25b2)

3. 下列各式不能用完全平方公式分解的是( )

A.x2+y2+2xy B.-x2+y2+2xy C.-x2-y2-2xy D.-x2-y2+2xy

4. 把下列各式分解因式:

(1)9a2m2-16b2n2; (2) ; (3)9(a+b)2-12(a+b)+4 (4)

自主学习:

1. (1)观察多项式x2-25.9x-y2,它们有什么共同特证?

(2)将它们分别写成两个因式的乘积,说明你的理由,并与同伴交流。

答案:(1)多项式的各项都能写成平方的形式。如x2-25中:x2本身是平方的形式,25=52也是平方的形式;9x-y2也是如此。

(2)逆用乘法公式(a+b)(a-b)=a2-b2,可知x2-25= x2-52=(x+5)(x-5),9x2-y2=(3x)2-y2=(3x+y)(3x-y).

2. 把乘法方式

(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2,反过来,就得到 a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2

上面这个变化过程是分解因式吗?说明你的理由。

答案:a2±2ab+b2=(a±b)2是分解因式。因为(a+b)2是因式的乘积的形式,(a-b)2也是因式的乘积的形式。

3. 把下列各式分解因式:

(1)25-16x2; (2) (3)9(m+n)2-(m-n)2; (4)2x3-8x;

(5)x2+14x+49; (6)(m+m)2-6(m+n)+9(7)3ax2+6axy+3ay2; (8)-x2-4y2+4xy

答案:

(1)25-16x2=(5+4x)(5-4x) (2) =

(3)9(m+n)2-(m-n)2=4(2m+n)(m+2n)

(4)2x3-8x=2x(x2-4)=2x(x2-2x)=2x(x+2)(x-2)

(5)x2+14x+49= x2+2×7x+72=(x+7)2

(6)(m+m)2-6(m+n)+9=[(m+n)-3]2=(m+n-3)2

(7)3ax2+6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2

(8)-x2-4y2+4xy=-(x-2y)2

4. 把下列各式分解因式:

(1) ; (2)(a+b)2-1; (3)-(x+2)2+16(x-1)2;

(4)

答案: (1) ; (2)(a+b)2-1=(a+b+1)(a+b-1)

(3)-(x+2)2+16(x-1)2=3(x-2)(5x-2);

(4)

5. 把下列各式分解因式:

(1)m2-12m+36; (2)8a-4a2-4;

(3) ; (4) 。

答案:(1)m2-12m+36=(m-6)2; (2)8a-4a2-4=-4(a-1)2;

(3) ;

(4)

6. 求证(x+1)(x+2)(x+3)(x+4)+1是一个完全平方式。

证明一:原式=(x2+5x+4)(x2+5x+6)+1

=(x2+5x)2+10(x2+5x)+25

=(x2+5x+5)2 ∴原命题成立

证明二:原式=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)+1

令a=x2+5x+4,则x2+5x+6=a+2

原式=a(a+2)+1=(a+1)2

即(x+1)(x+2)(x+3)(x+4)+1=(x2+5x+5)2

证明三:原式=(x2+5x+4)(x2+5x+6)+1

原式=(x2+5x+5-1)(x2+5x+5+1)+1

=(m-1)(m+1)+1=m2=(x2+5x+5)2

7. 已知a,b,c是△ABC的三条边,且满足a2+b2+c2-ab-bc-ca=0试判断△ABC的形状。

答案:∵a2+b2+c2-ab-bc-ca=0

∴2a2+2b2+2c2-2ab-2bc-2ac=0

即a2-2ab+b2+b2-2bc+c2+a2-2ac+c2=0

∴(a-b) 2+(b-c) 2+(a-c) 2=0

∵(a-b) 2≥0,(b-c) 2≥0,(a-c) 2≥0

∴a-b=0,b-c=0,a-c=0

∴a=b,b=c,a=c

∴这个三角形是等边三角形.

8. 设x+2z=3y,试判断x2-9y2+4z2+4xz的值是不是定值?

答案:当x+2z=3y时,x2-9y2+4z2+4xz的值为定值0。

6. 求证(x+1)(x+2)(x+3)(x+4)+1是一个完全平方式。

证明一:原式=(x2+5x+4)(x2+5x+6)+1

=(x2+5x)2+10(x2+5x)+25

=(x2+5x+5)2 ∴原命题成立

证明二:原式=[(x+1)(x+4)][(x+2)(x+3)]+1

=(x2+5x+4)(x2+5x+6)+1

令a=x2+5x+4,则x2+5x+6=a+2

原式=a(a+2)+1=(a+1)2

即(x+1)(x+2)(x+3)(x+4)+1=(x2+5x+5)2

证明三:原式=(x2+5x+4)(x2+5x+6)+1

原式=(x2+5x+5-1)(x2+5x+5+1)+1

=(m-1)(m+1)+1=m2=(x2+5x+5)2

1. 根据因式分解的概念,判断下列各等式哪些是因式分解,哪些不是,为什么?

(1)6abxy=2ab•3xy;

(2)

(3)(2x-1)•2=4x-2

(4)4x2-4x+1=4x(x-1)+1.

2. 填空

(1)(2m+n)(2m-n)=4m2-n2此运算属于 。

(2)x2-2x+1=(x-1)2此运算属于 。

(3)配完全平方式 49x2+y2+ =( -y)2

因式分解公式一览表

因式分解的公式是:

一、平方差公式

a^2一b^=(a+b)(a一b),

二、二数和的完全平方公式

a^2+2ab+b^2=(a+b)^2,

三、二数差的完全平方公式

a^2一2ab+b^2=(a一b)^2,

四、二数立方和的公式

a^3+b^3=(a+b)(a^2一ab+b^2)

五、二数立方差的公式

a^3一b^3=(a一b)(a^2+ab+b^2)

六、二数和的立方公式

a^3+3a^2b+3ab^2+b^3

=(a+b)^3,

七、二数差的立方公式

a^3一3a^2b+3ab^2一b^3

=(a一b)^3,

八、三个数的和的完全平方公式

a^2+b^2+c^2+2ab+2bc+2ca

=(a+b+c)^2。

数学因式分解的12种方法(因式分解公式一览表)