二项式定理展开式公式(二项式定理展开式公式常数项)
二项式定理展开式公式(二项式定理展开式公式常数项)

二项式定理展开式公式

(a+b)^n=a^n+[C(n,1)]a^(n-1)*b+C(n,2)a^(n-2)b^2+……+C(n-1,n)ab^(n-1)+b^n

通项T(k+1)=C(n,k)a^(n-k)*b^k。

二项展开式的通项公式(简称通项)为C(n,r)(a)^(n-r)b^r,用Tr+1表示(其中"r+1"为角标),即通项为展开式的第r+1项(如下图),即n取i的组合数目。

因此系数亦可表示为杨辉三角或帕斯卡三角形。

相关内容:

二项式定理最初用于开高次方。在中国,成书于1世纪的《九章算术》提出了世界上最早的多位正整数开平方、开立方的一般程序。11世纪中叶,贾宪在其《释锁算书》中给出了“开方作法本原图”,满足了三次以上开方的需要。

此图即为直到六次幂的二项式系数表,但是,贾宪并未给出二项式系数的一般公式,因而未能建立一般正整数次幂的二项式定理。13世纪,杨辉在其《详解九章算法》中引用了此图,并注明了此图出自贾宪的《释锁算书》。贾宪的著作已经失传,而杨辉的著作流传至今,所以今称此图为“贾宪三角”或“杨辉三角”。

二项式定理展开式公式是什么?

如下图所示。

二项式定理(英语:binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。

在阿拉伯,10世纪,阿尔

·卡拉吉已经知道二项式系数表的构造方法:每一列中的任一数等于上一列中同一行的数加上该数上面一数。11~12世纪奥马海牙姆将印度人的开平方、开立方运算推广到任意高次,因而研究了高次二项展开式。

13世纪纳绥尔丁在其《算板与沙盘算法集成》中给出了高次开方的近似公式,并用到了二项式系数表。15世纪,阿尔

·卡西在其《算术之钥》中介绍了任意高次开方法,并给出了直到九次幂的二项式系数表,还给出了二项式系数表的两术书中给出了一张二项式系数表,其形状与贾宪三角一样。 二项式定理是代数中的一个重要定理,用于展开一个二项式的幂。它的展开式公式如下:

对于任意实数a和b以及非负整数n,二项式定理给出了以下公式:

(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-2) * b^2 + ... + C(n,r) * a^(n-r) * b^r + ... + C(n,n) * a^0 * b^n

其中,C(n,r)为组合数,表示从n个对象中选择r个对象的不同组合方式的数量。它的计算公式为:

C(n,r) = n! / (r! * (n-r)!)

在二项式定理的展开式中,每一项都表示了给定次数的a和b的幂次方之间的系数。这个定理在代数、概率论、组合数学等领域有广泛的应用。它能够简化计算、推导多项式的性质,并且在展开多项式时提供了一种有序的方式。

二项式定理展开式公式常数项

Cn0=1.计算结果如下:

初等代数中,二项式是只有两项的多项式,即两个单项式的和。

二项式是仅次于单项式的最简单多项式。

数形趣遇

二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学。求二项式展开式系数的问题,实际上是一种组合数的计算问题。用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。

【图算】常数项产生在展开后的第5、6两项,用“错位加法”很容易“加出”杨辉三角形第8行的第5个数,简图如下:

1 4 6 4 1

1 5 10 10 5 1

…… 15 20 15 6 …

1 …… 35 35 21 ……

… 70 56 …

二项式定理公式Tk+1

应用二项式定理,

(a+b)^n,其通项公式为:Tk+1=C(n,k)*a^(n-k)*b^k

n=9,x^3=x^6*(1/x)^3 k=3

系数=C(n,k)=C(9,3)=9*8*7/(3*2*1)=84

希望能够帮助你!

免费下载这份资料?立即下载

二项式定理展开式公式

(a+b)^n=a^n+[C(n,1)]a^(n-1)*b+C(n,2)a^(n-2)b^2+……+C(n-1,n)ab^(n-1)+b^n

通项T(k+1)=C(n,k)a^(n-k)*b^k。

二项展开式的通项公式(简称通项)为C(n,r)(a)^(n-r)b^r,用Tr+1表示(其中"r+1"为角标),即通项为展开式的第r+1项(如下图),即n取i的组合数目。

因此系数亦可表示为杨辉三角或帕斯卡三角形。

相关内容:

二项式定理最初用于开高次方。在中国,成书于1世纪的《九章算术》提出了世界上最早的多位正整数开平方、开立方的一般程序。11世纪中叶,贾宪在其《释锁算书》中给出了“开方作法本原图”,满足了三次以上开方的需要。

此图即为直到六次幂的二项式系数表,但是,贾宪并未给出二项式系数的一般公式,因而未能建立一般正整数次幂的二项式定理。13世纪,杨辉在其《详解九章算法》中引用了此图,并注明了此图出自贾宪的《释锁算书》。贾宪的著作已经失传,而杨辉的著作流传至今,所以今称此图为“贾宪三角”或“杨辉三角”。

二项式定理展开式公式是什么?

如下图所示。

二项式定理(英语:binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。

在阿拉伯,10世纪,阿尔

·卡拉吉已经知道二项式系数表的构造方法:每一列中的任一数等于上一列中同一行的数加上该数上面一数。11~12世纪奥马海牙姆将印度人的开平方、开立方运算推广到任意高次,因而研究了高次二项展开式。

13世纪纳绥尔丁在其《算板与沙盘算法集成》中给出了高次开方的近似公式,并用到了二项式系数表。15世纪,阿尔

·卡西在其《算术之钥》中介绍了任意高次开方法,并给出了直到九次幂的二项式系数表,还给出了二项式系数表的两术书中给出了一张二项式系数表,其形状与贾宪三角一样。 二项式定理是代数中的一个重要定理,用于展开一个二项式的幂。它的展开式公式如下:

对于任意实数a和b以及非负整数n,二项式定理给出了以下公式:

(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-2) * b^2 + ... + C(n,r) * a^(n-r) * b^r + ... + C(n,n) * a^0 * b^n

其中,C(n,r)为组合数,表示从n个对象中选择r个对象的不同组合方式的数量。它的计算公式为:

C(n,r) = n! / (r! * (n-r)!)

在二项式定理的展开式中,每一项都表示了给定次数的a和b的幂次方之间的系数。这个定理在代数、概率论、组合数学等领域有广泛的应用。它能够简化计算、推导多项式的性质,并且在展开多项式时提供了一种有序的方式。

二项式定理展开式公式常数项

Cn0=1.计算结果如下:

初等代数中,二项式是只有两项的多项式,即两个单项式的和。

二项式是仅次于单项式的最简单多项式。

数形趣遇

二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学。求二项式展开式系数的问题,实际上是一种组合数的计算问题。用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。

【图算】常数项产生在展开后的第5、6两项,用“错位加法”很容易“加出”杨辉三角形第8行的第5个数,简图如下:

1 4 6 4 1

1 5 10 10 5 1

…… 15 20 15 6 …

1 …… 35 35 21 ……

… 70 56 …

二项式定理公式Tk+1

应用二项式定理,

(a+b)^n,其通项公式为:Tk+1=C(n,k)*a^(n-k)*b^k

n=9,x^3=x^6*(1/x)^3 k=3

系数=C(n,k)=C(9,3)=9*8*7/(3*2*1)=84

希望能够帮助你!

二项式定理展开式公式(二项式定理展开式公式常数项)