八年级上册数学因式分解(八年级上册数学因式分解难题)
八年级上册数学因式分解(八年级上册数学因式分解难题)

初二上学期数学因式分解50题题目?

1.a^4-4a+3

2.(a+x)^m+1*(b+x)^n-1-(a+x)^m*(b+x)^n

3.x^2+(a+1/a)xy+y^2

4.9a^2-4b^2+4bc-c^2

5.(c-a)^2-4(b-c)(a-b)

答案1.原式=a^4-a-3a+3=(a-1)(a^3+a^2+a-3)

2.[1-(a+x)^m][(b+x)^n-1]

3.(ax+y)(1/ax+y)

4.9a^2-4b^2+4bc-c^2=(3a)^2-(4b^2-4bc+c^2)=(3a)^2-(2b-c)^2=(3a+2b-c)(3a-2b+c)

5.(c-a)^2-4(b-c)(a-b)

= (c-a)(c-a)-4(ab-b^2-ac+bc)

=c^2-2ac+a^2-4ab+4b^2+4ac-4bc

=c^2+a^2+4b^2-4ab+2ac-4bc

=(a-2b)^2+c^2-(2c)(a-2b)

=(a-2b-c)^2

1.x^2+2x-8

2.x^2+3x-10

3.x^2-x-20

4.x^2+x-6

5.2x^2+5x-3

6.6x^2+4x-2

7.x^2-2x-3

8.x^2+6x+8

9.x^2-x-12

10.x^2-7x+10

11.6x^2+x+2

12.4x^2+4x-3

解方程:(x的平方+5x-6)分之一=(x的平方+x+6)分之一

十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解.

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.

2、十字相乘法的用处:(1)用十字相乘法来分解因式.(2)用十字相乘法来解一元二次方程.

3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错.

4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单.2、十字相乘法只适用于二次三项式类型的题目.3、十字相乘法比较难学.

5、十字相乘法解题实例:

1)、 用十字相乘法解一些简单常见的题目

例1把m²+4m-12分解因式

分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题

因为 1 -2

1 ╳ 6

所以m²+4m-12=(m-2)(m+6)

例2把5x²+6x-8分解因式

分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1.当二次项系数分为1×5,常数项分为-4×2时,才符合本题

因为 1 2

5 ╳ -4

所以5x²+6x-8=(x+2)(5x-4)

例3解方程x²-8x+15=0

分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5.

因为 1 -3

1 ╳ -5

所以原方程可变形(x-3)(x-5)=0

所以x1=3 x2=5

例4、解方程 6x²-5x-25=0

分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1.

因为 2 -5

3 ╳ 5

所以 原方程可变形成(2x-5)(3x+5)=0

所以 x1=5/2 x2=-5/3

2)、用十字相乘法解一些比较难的题目

例5把14x²-67xy+18y²分解因式

分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y

解: 因为 2 -9y

7 ╳ -2y

所以 14x²-67xy+18y²= (2x-9y)(7x-2y)

例6 把10x²-27xy-28y²-x+25y-3分解因式

分析:在本题中,要把这个多项式整理成二次三项式的形式

解法一、10x²-27xy-28y²-x+25y-3

=10x²-(27y+1)x -(28y²-25y+3) 4y -3

7y ╳ -1

=10x²-(27y+1)x -(4y-3)(7y -1)

=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)

5 ╳ 4y - 3

=(2x -7y +1)(5x +4y -3)

说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]

解法二、10x²-27xy-28y²-x+25y-3

=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y

=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y

=(2x -7y+1)(5x -4y -3) 2 x -7y 1

5 x - 4y ╳ -3

说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].

例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0

分析:2a²–ab-b²可以用十字相乘法进行因式分解

x²- 3ax + 2a²–ab -b²=0

x²- 3ax +(2a²–ab - b²)=0

x²- 3ax +(2a+b)(a-b)=0 1 -b

2 ╳ +b

[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)

1 ╳ -(a-b)

所以 x1=2a+b x2=a-b

5-7(a+1)-6(a+1)^2

=-[6(a+1)^2+7(a+1)-5]

=-[2(a+1)-1][3(a+1)+5]

=-(2a+1)(3a+8);

-4x^3 +6x^2 -2x

=-2x(2x^2-3x+1)

=-2x(x-1)(2x-1);

6(y-z)^2 +13(z-y)+6

=6(z-y)^2+13(z-y)+6

=[2(z-y)+3][3(z-y)+2]

=(2z-2y+3)(3z-3y+2).

比如...x^2+6x-7这个式子

由于一次幂x前系数为6

所以,我们可以想到,7-1=6

那正好这个式子的常数项为-7

因此我们想到将-7看成7*(-1)

于是我们作十字相成

x +7

x -1

的到(x+7)·(x-1)

成功分解了因式

3ab^2-9a^2b^2+6a^3b^2

=3ab^2(1-3a+2a^2)

=3ab^2(2a^2-3a+1)

=3ab^2(2a-1)(a-1)

5-7(a+1)-6(a+1)^2

=-[6(a+1)^2+7(a+1)-5]

=-[2(a+1)-1][3(a+1)+5]

=-(2a+1)(3a+8);

-4x^3 +6x^2 -2x

=-2x(2x^2-3x+1)

=-2x(x-1)(2x-1);

6(y-z)^2 +13(z-y)+6

=6(z-y)^2+13(z-y)+6

=[2(z-y)+3][3(z-y)+2]

=(2z-2y+3)(3z-3y+2).

比如...x^2+6x-7这个式子

由于一次幂x前系数为6

所以,我们可以想到,7-1=6

那正好这个式子的常数项为-7

因此我们想到将-7看成7*(-1)

于是我们作十字相成

x +7

x -1

的到(x+7)·(x-1)

成功分解了因式

3ab^2-9a^2b^2+6a^3b^2

=3ab^2(1-3a+2a^2)

=3ab^2(2a^2-3a+1)

=3ab^2(2a-1)(a-1)

x^2+3x-40

=x^2+3x+2.25-42.25

=(x+1.5)^2-(6.5)^2

=(x+8)(x-5).

⑹十字相乘法

这种方法有两种情况.

①x^2+(p+q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2+(p+q)x+pq=(x+p)(x+q) .

②kx^2+mx+n型的式子的因式分解

如果如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d).

图示如下:

a b

c d

例如:因为

1 -3

7 2

-3×7=-21,1×2=2,且2-21=-19,

所以7x^2-19x-6=(7x+2)(x-3).

十字相乘法口诀:首尾分解,交叉相乘,求和凑中

⑶分组分解法

分组分解是解方程的一种简洁的方法,我们来学习这个知识.

能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法.

比如:

ax+ay+bx+by

=a(x+y)+b(x+y)

=(a+b)(x+y)

我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难.

同样,这道题也可以这样做.

ax+ay+bx+by

=x(a+b)+y(a+b)

=(a+b)(x+y)

几道例题:

1. 5ax+5bx+3ay+3by

解法:=5x(a+b)+3y(a+b)

=(5x+3y)(a+b)

说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出.

2. x3-x2+x-1

解法:=(x3-x2)+(x-1)

=x2(x-1)+(x-1)

=(x-1)(x2+1)

利用二二分法,提公因式法提出x2,然后相合轻松解决.

3. x2-x-y2-y

解法:=(x2-y2)-(x+y)

=(x+y)(x-y)-(x+y)

=(x+y)(x-y+1)

利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决.

758²—258² =(758+258)(758-258)=1016*500=508000

还有,

1.若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是( )

A.2 B. 4 C.6 D.8

2.若9x2−12xy+m是两数和的平方式,那么m的值是( )

A.2y2 B.4y 2 C.±4y2 D.±16y2

3.把多项式a4− 2a2b2+b4因式分解的结果为( )

A.a2(a2−2b2)+b4 B.(a2−b2)2

C.(a−b)4 D.(a+b)2(a−b)2

4.把(a+b)2−4(a2−b2)+4(a−b)2分解因式为( )

A.( 3a−b)2 B.(3b+a)2

C.(3b−a)2 D.( 3a+b)2

5.计算:(−)2001+(−)2000的结果为( )

A.(−)2003 B.−(−)2001

C. D.−

6.已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为( )

A.M>N B.M≥N C.M≤N D.不能确定

7.对于任何整数m,多项式( 4m+5)2−9都能( )

A.被8整除 B.被m整除

C.被(m−1)整除 D.被(2n−1)整除

8.将−3x2n−6xn分解因式,结果是( )

A.−3xn(xn+2) B.−3(x2n+2xn)

C.−3xn(x2+2) D.3(−x2n−2xn)

9.下列变形中,是正确的因式分解的是( )

A. 0.09m2− n2 = ( 0.03m+ )( 0.03m−)

B.x2−10 = x2−9−1 = (x+3)(x−3)−1

C.x4−x2 = (x2+x)(x2−x)

D.(x+a)2−(x−a)2 = 4ax

10.多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是( )

A.x+y−z B.x−y+z C.y+z−x D.不存在

11.已知x为任意有理数,则多项式x−1−x2的值( )

A.一定为负数

B.不可能为正数

C.一定为正数

D.可能为正数或负数或零

二、解答题:

分解因式:

(1)(ab+b)2−(a+b)2

(2)(a2−x2)2−4ax(x−a)2

(3)7xn+1−14xn+7xn−1(n为不小于1的整数)

答案:

一、选择题:

1.B 说明:右边进行整式乘法后得16x4−81 = (2x)4−81,所以n应为4,答案为B.

2.B 说明:因为9x2−12xy+m是两数和的平方式,所以可设9x2−12xy+m = (ax+by)2,则有9x2−12xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = −12,b2y2 = m;得到a = 3,b = −2;或a = −3,b = 2;此时b2 = 4,因此,m = b2y2 = 4y2,答案为B.

3.D 说明:先运用完全平方公式,a4− 2a2b2+b4 = (a2−b2)2,再运用两数和的平方公式,两数分别是a2、−b2,则有(a2−b2)2 = (a+b)2(a−b)2,在这里,注意因式分解要分解到不能分解为止;答案为D.

4.C 说明:(a+b)2−4(a2−b2)+4(a−b)2 = (a+b)2−2(a+b)[2(a−b)]+[2(a−b)]2 = [a+b−2(a−b)]2 = (3b−a)2;所以答案为C.

5.B 说明:(−)2001+(−)2000 = (−)2000[(−)+1] = ()2000 •= ()2001 = −(−)2001,所以答案为B.

6.B 说明:因为M−N = x2+y2−2xy = (x−y)2≥0,所以M≥N.

7.A 说明:( 4m+5)2−9 = ( 4m+5+3)( 4m+5−3) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1).

8.A

9.D 说明:选项A,0.09 = 0.32,则 0.09m2− n2 = ( 0.3m+n)( 0.3m−n),所以A错;选项B的右边不是乘积的形式;选项C右边(x2+x)(x2−x)可继续分解为x2(x+1)(x−1);所以答案为D.

10.A 说明:本题的关键是符号的变化:z−x−y = −(x+y−z),而x−y+z≠y+z−x,同时x−y+z≠−(y+z−x),所以公因式为x+y−z.

11.B 说明:x−1−x2 = −(1−x+x2) = −(1−x)2≤0,即多项式x−1−x2的值为非正数,正确答案应该是B.

二、解答题:

(1) 答案:a(b−1)(ab+2b+a)

说明:(ab+b)2−(a+b)2 = (ab+b+a+b)(ab+b−a−b) = (ab+2b+a)(ab−a) = a(b−1)(ab+2b+a).

(2) 答案:(x−a)4

说明:(a2−x2)2−4ax(x−a)2

= [(a+x)(a−x)]2−4ax(x−a)2

= (a+x)2(a−x)2−4ax(x−a)2

= (x−a)2[(a+x)2−4ax]

= (x−a)2(a2+2ax+x2−4ax)

= (x−a)2(x−a)2 = (x−a)4.

(3) 答案:7xn−1(x−1)2

说明:原式 = 7xn−1 •x2−7xn−1 •2x+7xn−1 = 7xn−1(x2−2x+1) = 7xn−1(x−1)2.,1,初二上学期数学因式分解50题题目

谢谢,我跪求,我的假期作业

八年级上册因式分解有哪些方法

因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。(实际上经典例题: 1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2 解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x] =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1) =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)] =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y) 2.证明:对于任何数x,y,下式的值都不会为33 x^5+3x^4y-5x^3y^2+4xy^4+12y^5 解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y) 就是把简单的问题复杂化) 注意三原则 1 分解要彻底 2 最后结果只有小括号 3 最后结果中多项式首项系数为正(例如:-3x^2+x=x(-3x+1)) 归纳方法:沪科版七下课本上有的 1、提公因式法。 2、公式法。 3、分组分解法。 4、凑数法。[x^2+(a+b)x+ab=(x+a)(x+b)] 5、组合分解法。 6、十字相乘法。 7、双十字相乘法。 8、配方法。 9、拆项法。 10、换元法。 11、长除法。 12、加减项法。 13、求根法。 14、图象法。 15、主元法。 16、待定系数法。 17、特殊值法。 18、因式定理法。

编辑本段基本方法

提公因式法

各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。 例如:-am+bm+cm=-(a-b-c)m; a(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y)。 注意:把2a+1/2变成2(a+1/4)不叫提公因式

公式法

如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式: (a+b)(a-b)=a^2-b^2 反过来为a^2-b^2=(a+b)(a-b) 完全平方公式:(a+b)^2=a^2+2ab+b^2 反过来为a^2+2ab+b^2=(a+b)^2 (a-b)^2=a^2-2ab+b^2 a^2-2ab+b^2=(a-b)^2 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 两根式:ax2+bx+c=a(x-(-b+√(b2-4ac))/2a)(x-(-b-√(b2-4ac))/2a) 立方和公式:a^3+b^3=(a+b)(a2-ab+b2); 立方差公式:a^3-b^3=(a-b)(a2+ab+b2); 完全立方公式:a3±3a2b+3ab2±b3=(a±b)3. 公式:a^3+b^3+c^3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca) 例如:a^2+4ab+4b^2 =(a+2b)^2。 (3)分解因式技巧 1.分解因式与整式乘法是互为逆变形。 2.分解因式技巧掌握: ①等式左边必须是多项式; ②分解因式的结果必须是以乘积的形式表示; ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; ④分解因式必须分解到每个多项式因式都不能再分解为止。 注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。 3.提公因式法基本步骤: (1)找出公因式; (2)提公因式并确定另一个因式: ①第一步找公因式可按照确定公因式的方法先确定系数在确定字母; ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式; ③提完公因式后,另一因式的项数与原多项式的项数相同。

编辑本段竞赛用到的方法

分组分解法

分组分解是解方程的一种简洁的方法,我们来学习这个知识。 能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。 比如: ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y) 我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。 同样,这道题也可以这样做。 ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y) 几道例题: 1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b) 说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。 2. x^3-x^2+x-1 解法:=(x^3-x^2)+(x-1) =x^2(x-1)+ (x-1) =(x-1)(x^2+1) 利用二二分法,提公因式法提出 x2,然后相合轻松解决。 3. x^2-x-y^2-y 解法:=(x^2-y^2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y-1) 利用二二分法,再利用公式法a^2-b^2=(a+b)(a-b),然后相合解决。

十字相乘法

这种方法有两种情况。 ①x^2+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) . ②kx^2+mx+n型的式子的因式分解 如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d). 图示如下: a b ╳ c d 例如:因为 1 -3 ╳ 7 2 -3×7=-21,1×2=2,且2-21=-19, 所以7x2-19x-6=(7x+2)(x-3). 十字相乘法口诀:首尾分解,交叉相乘,求和凑中

拆项、添项法

这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。 例如:bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =(bc+ca)(c-a)+(bc-ab)(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b).

配方法

对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。 例如:x^2+3x-40 =x^2+3x+2.25-42.25 =(x+1.5)^2-(6.5)^2 =(x+8)(x-5).

应用因式定理

对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a. 例如:f(x)=x2+5x+6,f(-2)=0,则可确定x+2是x2+5x+6的一个因式。(事实上,x2+5x+6=(x+2)(x+3).) 注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数; 2、对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数

换元法

有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。相关公式

注意:换元后勿忘还元. 例如在分解(x2+x+1)(x2+x+2)-12时,可以令y=x^2+x,则 原式=(y+1)(y+2)-12 =y^2+3y+2-12=y^2+3y-10 =(y+5)(y-2) =(x^2+x+5)(x2+x-2) =(x^2+x+5)(x+2)(x-1). 也可以参看右图。

求根法

令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) . 例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4 +7x^3-2x^2-13x+6=0, 则通过综合除法可知,该方程的根为0.5 ,-3,-2,1. 所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).

图象法

令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn). 与方法⑼相比,能避开解方程的繁琐,但是不够准确。 例如在分解x^3 +2x^2-5x-6时,可以令y=x^3; +2x^2 -5x-6. 作出其图像,与x轴交点为-3,-1,2 则x^3+2x^2-5x-6=(x+1)(x+3)(x-2).

主元法

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

特殊值法

将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例如在分解x^3+9x^2+23x+15时,令x=2,则 x^3 +9x^2+23x+15=8+36+46+15=105, 将105分解成3个质因数的积,即105=3×5×7 . 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值, 则x^3+9x^2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。

待定系数法

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例如在分解x^4-x^3-5x^2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。 于是设x^4-x^3-5x^2-6x-4=(x^2+ax+b)(x^2+cx+d)相关公式

=x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd 由此可得a+c=-1, ac+b+d=-5, ad+bc=-6, bd=-4. 解得a=1,b=1,c=-2,d=-4. 则x^4-x^3-5x^2-6x-4=(x^2+x+1)(x^2-2x-4). 也可以参看右图。

双十字相乘法

双十字相乘法属于因式分解的一类,类似于十字相乘法。 双十字相乘法就是二元二次六项式,启始的式子如下: ax^2+bxy+cy^2+dx+ey+f x、y为未知数,其余都是常数 用一道例题来说明如何使用。 例:分解因式:x^2+5xy+6y^2+8x+18y+12. 分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。 解:图如下,把所有的数字交叉相连即可 x 2y 2 ① ② ③ x 3y 6 ∴原式=(x+2y+2)(x+3y+6). 双十字相乘法其步骤为: ①先用十字相乘法分解2次项,如十字相乘图①中x^2+5xy+6y^2=(x+2y)(x+3y); ②先依一个字母(如y)的一次系数分数常数项。如十字相乘图②中6y²+18y+12=(2y+2)(3y+6); ③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错。 利用根与系数的关系对二次多项式进行因式分解 例:对于二次多项式 aX^2+bX+c(a≠0) aX^2+bX+c=a[X^2+(b/a)X+(c/a)X]. 当△=b^2-4ac≥0时, =a(X^2-X1-X2+X1X2) =a(X-X1)(X-X2). 提取公因式,十字相乘,分组分解

八年级上册数学因式分解难题

因式分解练习题

140.m2(p-q)-p+q

141.(2m+3n)(2m-n)-4n(2m-n).

142.(x+2y)2-x2-2xy.

143.a(ab+bc+ac)-abc.

144.ab-a-b+1.

145.xyz-xy-xz+x-yz+y+z-1.

146.x4-2y4-2x3y+xy3.

148.abc(a2+b2+c2)-a3bc+2ab2c2.

149.(a-b-c)(a+b-c)-(b-c-a)(b+c-a).

150.a2(b-c)+b2(c-a)+c2(a-b).

a(a+b)(a-b)-a(a+b)2.

152.(x2-2x)2+2x(x-2)+1.

153.2acd-c2a-ad2.

154.(x-y)2+12(y-x)z+36z2.

156.x2-4ax+8ab-4b2.

157.a2b2+c2d2-2abcd+2ab-2cd+1.

158.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx).

160.(1-a2)(1-b2)-(a2-1)2(b2-1)2.

161.3x4-48y4.

162.(x+1)2-9(x-1)2.

163.(x2+pq)2-(p+q)2x2.

164.(1+2xy)2-(x2+y2)2.

165.4a2b2-(a2+b2)2.

166.4a2b2-(a2+b2-c2)2.

167.(c2-a2-b2)2-4a2b2.

168.(x2-b2+y2-a2)2-4(ab-xy)2.

169.64a4(x+1)2-49b4(x+1)4.

170.ab2-ac2+4ac-4a.

171.4a2-c2+6ab+3bc.

172.x3n+y3n.

174.(x+y)3+125.

176.(m-n)6-(m+n)6.

177.(x+1)6-(x-1)6.

178.a12-b12.

179.(z-x)3-(y+z)3.

180.(3m-2n)3+(3m+2n)3.

181.x6(x2-y2)+y6(y2-x2).

182.8(x+y)3+1.

183.(a-1)3-(b+1)3.

184.(a+b+c)3-a3-b3-c3.

185.x2+4xy+3y2.

186.x2y2-18xy+65.

187.x2+18x-144.

188.x2+30x+144.

189.x4+2x2-8.

190.3x4+6x2-9.

191.-m4+18m2-17.

192.3x4-7x2y2-20y4.

193.x5-2x3-8x.

194.a3-5a2b-300ab2.

195.x8+19x5-216x2.

196.6a4n+k-a2n+k-35ak.

199.30x2+8xy-182y2.

200.m4+14m2-15.

140.(p-q)(m-1)(m+1).

141.(2m-n)2.

142.2y(x+2y).

143.a2(b+c).

144.(b-1)(a-1).

145.(x-1)(y-1)(z-1).

提示:方法一 原式=x(yz-y-z+1)-(yz-y-z+1)

=(yz-y-z+1)(x-1)

=[y(z-1)-(z-1)](x-1)

=(x-1)(y-1)(z-1).

方法二 原式=xy(z-1)-x(z-1)-y(z-1)+(z-1)

=(xy-x-y+1)(z-1)

=[x(y-1)-(y-1)](z-1)

=(x-1)(y-1)(z-1).

146.(x-2y)(x+y)(x2-xy+y2).

提示:方法一 原式=x(x3+y3)-2y(x3+y3)

=(x3+y3)(x-2y)

=(x-2y)(x+y)(x2-xy+y2).

方法二 原式=x3(x-2y)+y3(x-2y)

=(x-2y)(x3+y3)

=(x-2y)(x+y)(x2-xy+y2).

148.abc(b+c)2.

提示:原式=abc(a2+b2+c2-a2+2bc).

149.2(b-c)(a-b-c).

提示:原式=(a-b-c)(a+b-c)+(a-b-c)(b-c-a)

=(a-b-c)[(a+b-c)+(b-c-a)]

=2(b-c)(a-b-c).

150.(a-b)(b-c)(a-c).

提示:原式=a2b-a2c+b2c-ab2+c2(a-b)

=(a2b-ab2)-(a2c-b2c)+c2(a-b)

=ab(a-b)-c(a2-b2)+c2(a-b)

=(a-b)[ab-c(a+b)+c2]

=(a-b)[a(b-c)-c(b-c)]

=(a-b)(b-c)(a-c).

提示:原式=a(a+b)[a-b-(a+b)]=a(a+b)(-2b)

=-2ab(a+b);

152.(x-1)4.

提示:原式=[x(x-2)]2+2•x(x-2)+12

=[x(x-2)+1]2=(x2-2x+1)2

=(x-1)4.

153.-a(c-d)2.

154.(x-y-6z)2.

156.(x-2b)(x-4a+2b).

157.(ab-cd+1)2.

提示:原式=(a2b2-2abcd+c2d2)+2(ab-cd)+1

=(ab-cd)2+2(ab-cd)+1

=(ab-cd+1)2.

158.(ax+by+ay-bx)2.

160.(1+a)(1-a)(1+b)(1-b)(a2+b2-a2b2).

161.3(x2+4y2)(x+2y)(x-2y).

162.4(2x-1)(2-x).

163.(x2+px+qx+pq)(x2-px-qx+pq).

164.(1+x-y)(1-x+y)(x2+y2+2xy+1).

165.-(a+b)2(a-b)2.

166.(a+b+c)(a+b-c)(c+a-b)(c-a+b).

提示:原式=(2ab+a2+b2-c2)(2ab-a2-b2+c2)

=[(a+b)2-c2][c2-(a-b)2]

=(a+b+c)(a+b-c)(c+a-b)(c-a+b).

167.(c+a-b)(c-a+b)(c+a+b)(c-a-b).

168.(x+y+a+b)(x+y-a-b)(x-y+a-b)(x-y-a+b).

提示:原式=(x2-b2+y2-a2+2ab-2xy)(x2-b2+y2-a2-2ab+2xy)

=[(x2-2xy+y2)-(a2-2ab+b2)][(x2+2xy+y2)

-(a2+2ab+b2)]

=[(x-y)2-(a-b)2][(x+y)2-(a+b)2]

=(x-y+a-b)(x-y-a+b)(x+y+a+b)(x+y-a-b).

169.(x+1)2(8a2+7b2x+7b2)(8a2-7b2x-7b2).

170.a(b-c+2)(b+c-2).

提示:原式=a(b2-c2+4c-4)

=a(b2-c2+2b-2b+2c+2c-4)

=a[(b-c)(b+c)-2(b-c)+2(b+c)-4]

=a[(b-c)+2][(b+c)-2].

171.(2a+c)(2a-c+3b).

172.(xn+yn)(x2n-xnyn+y2n).

174.(x+y+5)(x2+2xy+y2-5x-5y+25).

176.-4mn(3n2+m2)(3m2+n2).

提示:原式=[(m-n)3]2-[(m+n)3]2

=[(m-n)3+(m+n)3][(m-n)3-(m+n)3]

=2m[(m-n)2-(m-n)(m+n)(m+n)2]

×{-2n[(m-n)2+(m-n)(m+n)+(m+n)2]}

=-4mn(m2+3n2)(3m2+n2).

177.4x(x2+3)(3x2+1).

提示:原式=[(x+1)3]2-[(x-1)3]2

=[(x+1)3+(x-1)3][(x+1)3-(x-1)3]

=2x[(x+1)2-(x+1)(x-1)+(x-1)2]

×2[(x+1)2+(x+1)(x-1)+(x-1)2]

=4x(x2+3)(3x2+1).

178.(a-b)(a+b)(a2+b2)(a2+ab+b2)(a2-ab+b2)(a4-a2b2+b4).

提示:原式=(a6)2-(b6)2=(a6+b6)(a6-b6)

=[(a2)3+(b2)3][(a3)2-(b3)2]

=(a2+b2)(a4-a2b2+b4)(a3+b3)(a3-b3).

179.-(x+y)(x2+y2+3z2-xy+3yz-3xz).

180.18m(3m2+4n2).

181.(x+y)2(x-y)2(x2-xy+y2)(x2+xy+y2).

提示:原式=(x2-y2)(x6-y6)

=(x+y)(x-y)(x3+y3)(x3-y3).

182.(2x+2y+1)(4x2+8xy+4y2-2x-2y+1).

183.(a-b-2)(a2+ab+b2-a+b+1).

184.3(b+c)(a+b)(c+a).

提示:原式=[(a+b+c)3-a3]-(b3+c3).

185.(x+3y)(x+y).

186.(xy-13)(xy-5).

187.(x-6)(x+24).

188.(x+6)(x+24).

189.(x2-2)(x2+4).

190.3(x2+3)(x+1)(x-1).

191.(m2-17)(1+m)(1-m).

192.(3x2+5y2)(x+2y)(x-2y).

193.x(x+2)(x-2)(x2+2).

194.a(a-20b)(a+15b).

195.x2(x+3)(x2-3x+9)(x-2)(x2+2x+4).

提示:原式=x2(x6+19x3-216)

=x2(x3+27)(x3-8)

=x3(x+3)(x2-3x+9)(x-2)(x2+2x+4).

196.ak(2a2n-5)(3a2n+7).

199.2(3x-7y)(5x+13y).

200.(m2+15)(m+1)(m-1). 2

八年级上册数学因式分解思维导图

八年级数学上册《整式的乘法与因式分解》思维导图,参照思维可视化研究院,刘濯源教授团队的初中数学学科思维导图,自己尝试着画,但画之前一定弄清晰思维导图和学科思维导图的本质区别,你可阅读《为什么要给思维导图转基因》文章学习:

免费下载这份资料?立即下载

初二上学期数学因式分解50题题目?

1.a^4-4a+3

2.(a+x)^m+1*(b+x)^n-1-(a+x)^m*(b+x)^n

3.x^2+(a+1/a)xy+y^2

4.9a^2-4b^2+4bc-c^2

5.(c-a)^2-4(b-c)(a-b)

答案1.原式=a^4-a-3a+3=(a-1)(a^3+a^2+a-3)

2.[1-(a+x)^m][(b+x)^n-1]

3.(ax+y)(1/ax+y)

4.9a^2-4b^2+4bc-c^2=(3a)^2-(4b^2-4bc+c^2)=(3a)^2-(2b-c)^2=(3a+2b-c)(3a-2b+c)

5.(c-a)^2-4(b-c)(a-b)

= (c-a)(c-a)-4(ab-b^2-ac+bc)

=c^2-2ac+a^2-4ab+4b^2+4ac-4bc

=c^2+a^2+4b^2-4ab+2ac-4bc

=(a-2b)^2+c^2-(2c)(a-2b)

=(a-2b-c)^2

1.x^2+2x-8

2.x^2+3x-10

3.x^2-x-20

4.x^2+x-6

5.2x^2+5x-3

6.6x^2+4x-2

7.x^2-2x-3

8.x^2+6x+8

9.x^2-x-12

10.x^2-7x+10

11.6x^2+x+2

12.4x^2+4x-3

解方程:(x的平方+5x-6)分之一=(x的平方+x+6)分之一

十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解.

1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.

2、十字相乘法的用处:(1)用十字相乘法来分解因式.(2)用十字相乘法来解一元二次方程.

3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错.

4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单.2、十字相乘法只适用于二次三项式类型的题目.3、十字相乘法比较难学.

5、十字相乘法解题实例:

1)、 用十字相乘法解一些简单常见的题目

例1把m²+4m-12分解因式

分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题

因为 1 -2

1 ╳ 6

所以m²+4m-12=(m-2)(m+6)

例2把5x²+6x-8分解因式

分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1.当二次项系数分为1×5,常数项分为-4×2时,才符合本题

因为 1 2

5 ╳ -4

所以5x²+6x-8=(x+2)(5x-4)

例3解方程x²-8x+15=0

分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5.

因为 1 -3

1 ╳ -5

所以原方程可变形(x-3)(x-5)=0

所以x1=3 x2=5

例4、解方程 6x²-5x-25=0

分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1.

因为 2 -5

3 ╳ 5

所以 原方程可变形成(2x-5)(3x+5)=0

所以 x1=5/2 x2=-5/3

2)、用十字相乘法解一些比较难的题目

例5把14x²-67xy+18y²分解因式

分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y

解: 因为 2 -9y

7 ╳ -2y

所以 14x²-67xy+18y²= (2x-9y)(7x-2y)

例6 把10x²-27xy-28y²-x+25y-3分解因式

分析:在本题中,要把这个多项式整理成二次三项式的形式

解法一、10x²-27xy-28y²-x+25y-3

=10x²-(27y+1)x -(28y²-25y+3) 4y -3

7y ╳ -1

=10x²-(27y+1)x -(4y-3)(7y -1)

=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)

5 ╳ 4y - 3

=(2x -7y +1)(5x +4y -3)

说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]

解法二、10x²-27xy-28y²-x+25y-3

=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y

=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y

=(2x -7y+1)(5x -4y -3) 2 x -7y 1

5 x - 4y ╳ -3

说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].

例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0

分析:2a²–ab-b²可以用十字相乘法进行因式分解

x²- 3ax + 2a²–ab -b²=0

x²- 3ax +(2a²–ab - b²)=0

x²- 3ax +(2a+b)(a-b)=0 1 -b

2 ╳ +b

[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)

1 ╳ -(a-b)

所以 x1=2a+b x2=a-b

5-7(a+1)-6(a+1)^2

=-[6(a+1)^2+7(a+1)-5]

=-[2(a+1)-1][3(a+1)+5]

=-(2a+1)(3a+8);

-4x^3 +6x^2 -2x

=-2x(2x^2-3x+1)

=-2x(x-1)(2x-1);

6(y-z)^2 +13(z-y)+6

=6(z-y)^2+13(z-y)+6

=[2(z-y)+3][3(z-y)+2]

=(2z-2y+3)(3z-3y+2).

比如...x^2+6x-7这个式子

由于一次幂x前系数为6

所以,我们可以想到,7-1=6

那正好这个式子的常数项为-7

因此我们想到将-7看成7*(-1)

于是我们作十字相成

x +7

x -1

的到(x+7)·(x-1)

成功分解了因式

3ab^2-9a^2b^2+6a^3b^2

=3ab^2(1-3a+2a^2)

=3ab^2(2a^2-3a+1)

=3ab^2(2a-1)(a-1)

5-7(a+1)-6(a+1)^2

=-[6(a+1)^2+7(a+1)-5]

=-[2(a+1)-1][3(a+1)+5]

=-(2a+1)(3a+8);

-4x^3 +6x^2 -2x

=-2x(2x^2-3x+1)

=-2x(x-1)(2x-1);

6(y-z)^2 +13(z-y)+6

=6(z-y)^2+13(z-y)+6

=[2(z-y)+3][3(z-y)+2]

=(2z-2y+3)(3z-3y+2).

比如...x^2+6x-7这个式子

由于一次幂x前系数为6

所以,我们可以想到,7-1=6

那正好这个式子的常数项为-7

因此我们想到将-7看成7*(-1)

于是我们作十字相成

x +7

x -1

的到(x+7)·(x-1)

成功分解了因式

3ab^2-9a^2b^2+6a^3b^2

=3ab^2(1-3a+2a^2)

=3ab^2(2a^2-3a+1)

=3ab^2(2a-1)(a-1)

x^2+3x-40

=x^2+3x+2.25-42.25

=(x+1.5)^2-(6.5)^2

=(x+8)(x-5).

⑹十字相乘法

这种方法有两种情况.

①x^2+(p+q)x+pq型的式子的因式分解

这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2+(p+q)x+pq=(x+p)(x+q) .

②kx^2+mx+n型的式子的因式分解

如果如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d).

图示如下:

a b

c d

例如:因为

1 -3

7 2

-3×7=-21,1×2=2,且2-21=-19,

所以7x^2-19x-6=(7x+2)(x-3).

十字相乘法口诀:首尾分解,交叉相乘,求和凑中

⑶分组分解法

分组分解是解方程的一种简洁的方法,我们来学习这个知识.

能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法.

比如:

ax+ay+bx+by

=a(x+y)+b(x+y)

=(a+b)(x+y)

我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难.

同样,这道题也可以这样做.

ax+ay+bx+by

=x(a+b)+y(a+b)

=(a+b)(x+y)

几道例题:

1. 5ax+5bx+3ay+3by

解法:=5x(a+b)+3y(a+b)

=(5x+3y)(a+b)

说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出.

2. x3-x2+x-1

解法:=(x3-x2)+(x-1)

=x2(x-1)+(x-1)

=(x-1)(x2+1)

利用二二分法,提公因式法提出x2,然后相合轻松解决.

3. x2-x-y2-y

解法:=(x2-y2)-(x+y)

=(x+y)(x-y)-(x+y)

=(x+y)(x-y+1)

利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决.

758²—258² =(758+258)(758-258)=1016*500=508000

还有,

1.若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是( )

A.2 B. 4 C.6 D.8

2.若9x2−12xy+m是两数和的平方式,那么m的值是( )

A.2y2 B.4y 2 C.±4y2 D.±16y2

3.把多项式a4− 2a2b2+b4因式分解的结果为( )

A.a2(a2−2b2)+b4 B.(a2−b2)2

C.(a−b)4 D.(a+b)2(a−b)2

4.把(a+b)2−4(a2−b2)+4(a−b)2分解因式为( )

A.( 3a−b)2 B.(3b+a)2

C.(3b−a)2 D.( 3a+b)2

5.计算:(−)2001+(−)2000的结果为( )

A.(−)2003 B.−(−)2001

C. D.−

6.已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为( )

A.M>N B.M≥N C.M≤N D.不能确定

7.对于任何整数m,多项式( 4m+5)2−9都能( )

A.被8整除 B.被m整除

C.被(m−1)整除 D.被(2n−1)整除

8.将−3x2n−6xn分解因式,结果是( )

A.−3xn(xn+2) B.−3(x2n+2xn)

C.−3xn(x2+2) D.3(−x2n−2xn)

9.下列变形中,是正确的因式分解的是( )

A. 0.09m2− n2 = ( 0.03m+ )( 0.03m−)

B.x2−10 = x2−9−1 = (x+3)(x−3)−1

C.x4−x2 = (x2+x)(x2−x)

D.(x+a)2−(x−a)2 = 4ax

10.多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是( )

A.x+y−z B.x−y+z C.y+z−x D.不存在

11.已知x为任意有理数,则多项式x−1−x2的值( )

A.一定为负数

B.不可能为正数

C.一定为正数

D.可能为正数或负数或零

二、解答题:

分解因式:

(1)(ab+b)2−(a+b)2

(2)(a2−x2)2−4ax(x−a)2

(3)7xn+1−14xn+7xn−1(n为不小于1的整数)

答案:

一、选择题:

1.B 说明:右边进行整式乘法后得16x4−81 = (2x)4−81,所以n应为4,答案为B.

2.B 说明:因为9x2−12xy+m是两数和的平方式,所以可设9x2−12xy+m = (ax+by)2,则有9x2−12xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = −12,b2y2 = m;得到a = 3,b = −2;或a = −3,b = 2;此时b2 = 4,因此,m = b2y2 = 4y2,答案为B.

3.D 说明:先运用完全平方公式,a4− 2a2b2+b4 = (a2−b2)2,再运用两数和的平方公式,两数分别是a2、−b2,则有(a2−b2)2 = (a+b)2(a−b)2,在这里,注意因式分解要分解到不能分解为止;答案为D.

4.C 说明:(a+b)2−4(a2−b2)+4(a−b)2 = (a+b)2−2(a+b)[2(a−b)]+[2(a−b)]2 = [a+b−2(a−b)]2 = (3b−a)2;所以答案为C.

5.B 说明:(−)2001+(−)2000 = (−)2000[(−)+1] = ()2000 •= ()2001 = −(−)2001,所以答案为B.

6.B 说明:因为M−N = x2+y2−2xy = (x−y)2≥0,所以M≥N.

7.A 说明:( 4m+5)2−9 = ( 4m+5+3)( 4m+5−3) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1).

8.A

9.D 说明:选项A,0.09 = 0.32,则 0.09m2− n2 = ( 0.3m+n)( 0.3m−n),所以A错;选项B的右边不是乘积的形式;选项C右边(x2+x)(x2−x)可继续分解为x2(x+1)(x−1);所以答案为D.

10.A 说明:本题的关键是符号的变化:z−x−y = −(x+y−z),而x−y+z≠y+z−x,同时x−y+z≠−(y+z−x),所以公因式为x+y−z.

11.B 说明:x−1−x2 = −(1−x+x2) = −(1−x)2≤0,即多项式x−1−x2的值为非正数,正确答案应该是B.

二、解答题:

(1) 答案:a(b−1)(ab+2b+a)

说明:(ab+b)2−(a+b)2 = (ab+b+a+b)(ab+b−a−b) = (ab+2b+a)(ab−a) = a(b−1)(ab+2b+a).

(2) 答案:(x−a)4

说明:(a2−x2)2−4ax(x−a)2

= [(a+x)(a−x)]2−4ax(x−a)2

= (a+x)2(a−x)2−4ax(x−a)2

= (x−a)2[(a+x)2−4ax]

= (x−a)2(a2+2ax+x2−4ax)

= (x−a)2(x−a)2 = (x−a)4.

(3) 答案:7xn−1(x−1)2

说明:原式 = 7xn−1 •x2−7xn−1 •2x+7xn−1 = 7xn−1(x2−2x+1) = 7xn−1(x−1)2.,1,初二上学期数学因式分解50题题目

谢谢,我跪求,我的假期作业

八年级上册因式分解有哪些方法

因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。(实际上经典例题: 1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2 解:原式=(1+y)^2+2(1+y)x^2(1+y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2) =[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x]·[(1+y)+x^2(1-y)-2x] =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1) =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)] =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y) 2.证明:对于任何数x,y,下式的值都不会为33 x^5+3x^4y-5x^3y^2+4xy^4+12y^5 解:原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y) 就是把简单的问题复杂化) 注意三原则 1 分解要彻底 2 最后结果只有小括号 3 最后结果中多项式首项系数为正(例如:-3x^2+x=x(-3x+1)) 归纳方法:沪科版七下课本上有的 1、提公因式法。 2、公式法。 3、分组分解法。 4、凑数法。[x^2+(a+b)x+ab=(x+a)(x+b)] 5、组合分解法。 6、十字相乘法。 7、双十字相乘法。 8、配方法。 9、拆项法。 10、换元法。 11、长除法。 12、加减项法。 13、求根法。 14、图象法。 15、主元法。 16、待定系数法。 17、特殊值法。 18、因式定理法。

编辑本段基本方法

提公因式法

各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。 例如:-am+bm+cm=-(a-b-c)m; a(x-y)+b(y-x)=a(x-y)-b(x-y)=(a-b)(x-y)。 注意:把2a+1/2变成2(a+1/4)不叫提公因式

公式法

如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式: (a+b)(a-b)=a^2-b^2 反过来为a^2-b^2=(a+b)(a-b) 完全平方公式:(a+b)^2=a^2+2ab+b^2 反过来为a^2+2ab+b^2=(a+b)^2 (a-b)^2=a^2-2ab+b^2 a^2-2ab+b^2=(a-b)^2 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 两根式:ax2+bx+c=a(x-(-b+√(b2-4ac))/2a)(x-(-b-√(b2-4ac))/2a) 立方和公式:a^3+b^3=(a+b)(a2-ab+b2); 立方差公式:a^3-b^3=(a-b)(a2+ab+b2); 完全立方公式:a3±3a2b+3ab2±b3=(a±b)3. 公式:a^3+b^3+c^3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca) 例如:a^2+4ab+4b^2 =(a+2b)^2。 (3)分解因式技巧 1.分解因式与整式乘法是互为逆变形。 2.分解因式技巧掌握: ①等式左边必须是多项式; ②分解因式的结果必须是以乘积的形式表示; ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; ④分解因式必须分解到每个多项式因式都不能再分解为止。 注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。 3.提公因式法基本步骤: (1)找出公因式; (2)提公因式并确定另一个因式: ①第一步找公因式可按照确定公因式的方法先确定系数在确定字母; ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式; ③提完公因式后,另一因式的项数与原多项式的项数相同。

编辑本段竞赛用到的方法

分组分解法

分组分解是解方程的一种简洁的方法,我们来学习这个知识。 能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。 比如: ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y) 我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。 同样,这道题也可以这样做。 ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y) 几道例题: 1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b) 说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。 2. x^3-x^2+x-1 解法:=(x^3-x^2)+(x-1) =x^2(x-1)+ (x-1) =(x-1)(x^2+1) 利用二二分法,提公因式法提出 x2,然后相合轻松解决。 3. x^2-x-y^2-y 解法:=(x^2-y^2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y-1) 利用二二分法,再利用公式法a^2-b^2=(a+b)(a-b),然后相合解决。

十字相乘法

这种方法有两种情况。 ①x^2+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x^2+(p+q)x+pq=(x+p)(x+q) . ②kx^2+mx+n型的式子的因式分解 如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d). 图示如下: a b ╳ c d 例如:因为 1 -3 ╳ 7 2 -3×7=-21,1×2=2,且2-21=-19, 所以7x2-19x-6=(7x+2)(x-3). 十字相乘法口诀:首尾分解,交叉相乘,求和凑中

拆项、添项法

这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。 例如:bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =(bc+ca)(c-a)+(bc-ab)(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b).

配方法

对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。 例如:x^2+3x-40 =x^2+3x+2.25-42.25 =(x+1.5)^2-(6.5)^2 =(x+8)(x-5).

应用因式定理

对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a. 例如:f(x)=x2+5x+6,f(-2)=0,则可确定x+2是x2+5x+6的一个因式。(事实上,x2+5x+6=(x+2)(x+3).) 注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数; 2、对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数

换元法

有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。相关公式

注意:换元后勿忘还元. 例如在分解(x2+x+1)(x2+x+2)-12时,可以令y=x^2+x,则 原式=(y+1)(y+2)-12 =y^2+3y+2-12=y^2+3y-10 =(y+5)(y-2) =(x^2+x+5)(x2+x-2) =(x^2+x+5)(x+2)(x-1). 也可以参看右图。

求根法

令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) . 例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4 +7x^3-2x^2-13x+6=0, 则通过综合除法可知,该方程的根为0.5 ,-3,-2,1. 所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).

图象法

令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn). 与方法⑼相比,能避开解方程的繁琐,但是不够准确。 例如在分解x^3 +2x^2-5x-6时,可以令y=x^3; +2x^2 -5x-6. 作出其图像,与x轴交点为-3,-1,2 则x^3+2x^2-5x-6=(x+1)(x+3)(x-2).

主元法

先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。

特殊值法

将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例如在分解x^3+9x^2+23x+15时,令x=2,则 x^3 +9x^2+23x+15=8+36+46+15=105, 将105分解成3个质因数的积,即105=3×5×7 . 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值, 则x^3+9x^2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。

待定系数法

首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例如在分解x^4-x^3-5x^2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。 于是设x^4-x^3-5x^2-6x-4=(x^2+ax+b)(x^2+cx+d)相关公式

=x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd 由此可得a+c=-1, ac+b+d=-5, ad+bc=-6, bd=-4. 解得a=1,b=1,c=-2,d=-4. 则x^4-x^3-5x^2-6x-4=(x^2+x+1)(x^2-2x-4). 也可以参看右图。

双十字相乘法

双十字相乘法属于因式分解的一类,类似于十字相乘法。 双十字相乘法就是二元二次六项式,启始的式子如下: ax^2+bxy+cy^2+dx+ey+f x、y为未知数,其余都是常数 用一道例题来说明如何使用。 例:分解因式:x^2+5xy+6y^2+8x+18y+12. 分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。 解:图如下,把所有的数字交叉相连即可 x 2y 2 ① ② ③ x 3y 6 ∴原式=(x+2y+2)(x+3y+6). 双十字相乘法其步骤为: ①先用十字相乘法分解2次项,如十字相乘图①中x^2+5xy+6y^2=(x+2y)(x+3y); ②先依一个字母(如y)的一次系数分数常数项。如十字相乘图②中6y²+18y+12=(2y+2)(3y+6); ③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错。 利用根与系数的关系对二次多项式进行因式分解 例:对于二次多项式 aX^2+bX+c(a≠0) aX^2+bX+c=a[X^2+(b/a)X+(c/a)X]. 当△=b^2-4ac≥0时, =a(X^2-X1-X2+X1X2) =a(X-X1)(X-X2). 提取公因式,十字相乘,分组分解

八年级上册数学因式分解难题

因式分解练习题

140.m2(p-q)-p+q

141.(2m+3n)(2m-n)-4n(2m-n).

142.(x+2y)2-x2-2xy.

143.a(ab+bc+ac)-abc.

144.ab-a-b+1.

145.xyz-xy-xz+x-yz+y+z-1.

146.x4-2y4-2x3y+xy3.

148.abc(a2+b2+c2)-a3bc+2ab2c2.

149.(a-b-c)(a+b-c)-(b-c-a)(b+c-a).

150.a2(b-c)+b2(c-a)+c2(a-b).

a(a+b)(a-b)-a(a+b)2.

152.(x2-2x)2+2x(x-2)+1.

153.2acd-c2a-ad2.

154.(x-y)2+12(y-x)z+36z2.

156.x2-4ax+8ab-4b2.

157.a2b2+c2d2-2abcd+2ab-2cd+1.

158.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx).

160.(1-a2)(1-b2)-(a2-1)2(b2-1)2.

161.3x4-48y4.

162.(x+1)2-9(x-1)2.

163.(x2+pq)2-(p+q)2x2.

164.(1+2xy)2-(x2+y2)2.

165.4a2b2-(a2+b2)2.

166.4a2b2-(a2+b2-c2)2.

167.(c2-a2-b2)2-4a2b2.

168.(x2-b2+y2-a2)2-4(ab-xy)2.

169.64a4(x+1)2-49b4(x+1)4.

170.ab2-ac2+4ac-4a.

171.4a2-c2+6ab+3bc.

172.x3n+y3n.

174.(x+y)3+125.

176.(m-n)6-(m+n)6.

177.(x+1)6-(x-1)6.

178.a12-b12.

179.(z-x)3-(y+z)3.

180.(3m-2n)3+(3m+2n)3.

181.x6(x2-y2)+y6(y2-x2).

182.8(x+y)3+1.

183.(a-1)3-(b+1)3.

184.(a+b+c)3-a3-b3-c3.

185.x2+4xy+3y2.

186.x2y2-18xy+65.

187.x2+18x-144.

188.x2+30x+144.

189.x4+2x2-8.

190.3x4+6x2-9.

191.-m4+18m2-17.

192.3x4-7x2y2-20y4.

193.x5-2x3-8x.

194.a3-5a2b-300ab2.

195.x8+19x5-216x2.

196.6a4n+k-a2n+k-35ak.

199.30x2+8xy-182y2.

200.m4+14m2-15.

140.(p-q)(m-1)(m+1).

141.(2m-n)2.

142.2y(x+2y).

143.a2(b+c).

144.(b-1)(a-1).

145.(x-1)(y-1)(z-1).

提示:方法一 原式=x(yz-y-z+1)-(yz-y-z+1)

=(yz-y-z+1)(x-1)

=[y(z-1)-(z-1)](x-1)

=(x-1)(y-1)(z-1).

方法二 原式=xy(z-1)-x(z-1)-y(z-1)+(z-1)

=(xy-x-y+1)(z-1)

=[x(y-1)-(y-1)](z-1)

=(x-1)(y-1)(z-1).

146.(x-2y)(x+y)(x2-xy+y2).

提示:方法一 原式=x(x3+y3)-2y(x3+y3)

=(x3+y3)(x-2y)

=(x-2y)(x+y)(x2-xy+y2).

方法二 原式=x3(x-2y)+y3(x-2y)

=(x-2y)(x3+y3)

=(x-2y)(x+y)(x2-xy+y2).

148.abc(b+c)2.

提示:原式=abc(a2+b2+c2-a2+2bc).

149.2(b-c)(a-b-c).

提示:原式=(a-b-c)(a+b-c)+(a-b-c)(b-c-a)

=(a-b-c)[(a+b-c)+(b-c-a)]

=2(b-c)(a-b-c).

150.(a-b)(b-c)(a-c).

提示:原式=a2b-a2c+b2c-ab2+c2(a-b)

=(a2b-ab2)-(a2c-b2c)+c2(a-b)

=ab(a-b)-c(a2-b2)+c2(a-b)

=(a-b)[ab-c(a+b)+c2]

=(a-b)[a(b-c)-c(b-c)]

=(a-b)(b-c)(a-c).

提示:原式=a(a+b)[a-b-(a+b)]=a(a+b)(-2b)

=-2ab(a+b);

152.(x-1)4.

提示:原式=[x(x-2)]2+2•x(x-2)+12

=[x(x-2)+1]2=(x2-2x+1)2

=(x-1)4.

153.-a(c-d)2.

154.(x-y-6z)2.

156.(x-2b)(x-4a+2b).

157.(ab-cd+1)2.

提示:原式=(a2b2-2abcd+c2d2)+2(ab-cd)+1

=(ab-cd)2+2(ab-cd)+1

=(ab-cd+1)2.

158.(ax+by+ay-bx)2.

160.(1+a)(1-a)(1+b)(1-b)(a2+b2-a2b2).

161.3(x2+4y2)(x+2y)(x-2y).

162.4(2x-1)(2-x).

163.(x2+px+qx+pq)(x2-px-qx+pq).

164.(1+x-y)(1-x+y)(x2+y2+2xy+1).

165.-(a+b)2(a-b)2.

166.(a+b+c)(a+b-c)(c+a-b)(c-a+b).

提示:原式=(2ab+a2+b2-c2)(2ab-a2-b2+c2)

=[(a+b)2-c2][c2-(a-b)2]

=(a+b+c)(a+b-c)(c+a-b)(c-a+b).

167.(c+a-b)(c-a+b)(c+a+b)(c-a-b).

168.(x+y+a+b)(x+y-a-b)(x-y+a-b)(x-y-a+b).

提示:原式=(x2-b2+y2-a2+2ab-2xy)(x2-b2+y2-a2-2ab+2xy)

=[(x2-2xy+y2)-(a2-2ab+b2)][(x2+2xy+y2)

-(a2+2ab+b2)]

=[(x-y)2-(a-b)2][(x+y)2-(a+b)2]

=(x-y+a-b)(x-y-a+b)(x+y+a+b)(x+y-a-b).

169.(x+1)2(8a2+7b2x+7b2)(8a2-7b2x-7b2).

170.a(b-c+2)(b+c-2).

提示:原式=a(b2-c2+4c-4)

=a(b2-c2+2b-2b+2c+2c-4)

=a[(b-c)(b+c)-2(b-c)+2(b+c)-4]

=a[(b-c)+2][(b+c)-2].

171.(2a+c)(2a-c+3b).

172.(xn+yn)(x2n-xnyn+y2n).

174.(x+y+5)(x2+2xy+y2-5x-5y+25).

176.-4mn(3n2+m2)(3m2+n2).

提示:原式=[(m-n)3]2-[(m+n)3]2

=[(m-n)3+(m+n)3][(m-n)3-(m+n)3]

=2m[(m-n)2-(m-n)(m+n)(m+n)2]

×{-2n[(m-n)2+(m-n)(m+n)+(m+n)2]}

=-4mn(m2+3n2)(3m2+n2).

177.4x(x2+3)(3x2+1).

提示:原式=[(x+1)3]2-[(x-1)3]2

=[(x+1)3+(x-1)3][(x+1)3-(x-1)3]

=2x[(x+1)2-(x+1)(x-1)+(x-1)2]

×2[(x+1)2+(x+1)(x-1)+(x-1)2]

=4x(x2+3)(3x2+1).

178.(a-b)(a+b)(a2+b2)(a2+ab+b2)(a2-ab+b2)(a4-a2b2+b4).

提示:原式=(a6)2-(b6)2=(a6+b6)(a6-b6)

=[(a2)3+(b2)3][(a3)2-(b3)2]

=(a2+b2)(a4-a2b2+b4)(a3+b3)(a3-b3).

179.-(x+y)(x2+y2+3z2-xy+3yz-3xz).

180.18m(3m2+4n2).

181.(x+y)2(x-y)2(x2-xy+y2)(x2+xy+y2).

提示:原式=(x2-y2)(x6-y6)

=(x+y)(x-y)(x3+y3)(x3-y3).

182.(2x+2y+1)(4x2+8xy+4y2-2x-2y+1).

183.(a-b-2)(a2+ab+b2-a+b+1).

184.3(b+c)(a+b)(c+a).

提示:原式=[(a+b+c)3-a3]-(b3+c3).

185.(x+3y)(x+y).

186.(xy-13)(xy-5).

187.(x-6)(x+24).

188.(x+6)(x+24).

189.(x2-2)(x2+4).

190.3(x2+3)(x+1)(x-1).

191.(m2-17)(1+m)(1-m).

192.(3x2+5y2)(x+2y)(x-2y).

193.x(x+2)(x-2)(x2+2).

194.a(a-20b)(a+15b).

195.x2(x+3)(x2-3x+9)(x-2)(x2+2x+4).

提示:原式=x2(x6+19x3-216)

=x2(x3+27)(x3-8)

=x3(x+3)(x2-3x+9)(x-2)(x2+2x+4).

196.ak(2a2n-5)(3a2n+7).

199.2(3x-7y)(5x+13y).

200.(m2+15)(m+1)(m-1). 2

八年级上册数学因式分解思维导图

八年级数学上册《整式的乘法与因式分解》思维导图,参照思维可视化研究院,刘濯源教授团队的初中数学学科思维导图,自己尝试着画,但画之前一定弄清晰思维导图和学科思维导图的本质区别,你可阅读《为什么要给思维导图转基因》文章学习:

八年级上册数学因式分解(八年级上册数学因式分解难题)