中考必做的36道压轴题物理(初三物理知识重点和笔记)
中考必做的36道压轴题物理(初三物理知识重点和笔记)

2017中考物理压轴题及答案

一、填空题

1.用托盘天平测铜块的质量:应先将天平放在水平桌面上,游码移至标尺左端的__零__刻度线处,调节平衡螺母使天平平衡;然后将铜块放入左盘,当右盘所加砝码和游码位置如图所示时天平再次平衡,铜块质量为__31__ g。

2.浏阳腐乳以其口感细腻、味道纯正而远近闻名,深受广大消费者喜爱。现测得一块腐乳质量约为10 g,体积约为8 cm3,则其密度为__1.25__ g/cm3。若吃掉一半,剩余部分密度将__不变__(选填“变大”“变小”或“不变”)。

3.一个空瓶子的质量是150 g,当装满水时,瓶和水的总质量是400 g;当装满另一种液体时,瓶和液体的总质量是350 g。则这个瓶子的容积是__250__cm3,液体的密度是__0.8×103__ kg/m3。

4.小明在“测量液体密度的实验”中得到的数据如下表,根据表中数据可得到液体密度为__1_g/cm3__,容器的质量为__4.9_g__。

实验次数 1 2 3 4

液体体积/cm3 5.8 7.9 16.7 35.1

液体和容器的总质量/g 10.7 12.8 21.6 40.0

二、选择题

5.如图是荣获金奖的扬州玉器“八角素瓶”,玉器在加工过程中不发生变化的是(C)

A.质量 B.体积

C.密度 D.重力

6.水是一种重要的资源,具有一些奇特的性质,如水结成冰后体积会变大,该过程中一定不变的是(C)

A.密度 B.温度 C.质量 D.内能

7.鸡尾酒是由几种不同的酒调配而成的,经过调配后,不同颜色的酒界面分明,这是由于不同颜色的酒具有不同的(D)

A.重力 B.质量 C.体积 D.密度

8不漏气的橡皮氢气球由地面上升过程中,球内气体的质量与密度的变化情况是(B)

A.质量增加,密度增加 B.质量不变,密度减小

C.质量减小,密度减小 D.质量不变,密度不变

9.从火炉中拿出被烧红的铁块,降温后变大的物理量是(D)

A.内能 B.质量 C.体积 D.密度

10学完密度知识后,一位普通中学生对自己的身体体积进行了估算,下列估算值最接近实际的是(B)

A.30 dm3 B.60 dm3

C.100 dm3 D.120 dm3

11.小玉同学在探究“同种物质的质量与体积的关系”的实验中,测出几组数据,根据这些数据绘出图象。如图所示四幅图象中,能正确反映“质量与体积关系”的图象是(B)

12.a、b两个实心物体的体积与质量的关系如图所示,下列说法中正确的是(B)

A.a物质的密度比b的大

B.b物质的密度是2×103 kg/m3

C.b物质的密度是a的2倍

D.a、b的密度与它们的质量、体积有关

13.为了测盐水的密度,某实验小组制订了如下的实验计划,以下实验步骤安排最合理的是(A)

①在烧杯中装入适量盐水,测出它们的总质量 ②将烧杯中一部分盐水倒入量筒中 ③测出量筒中盐水的体积 ④测出烧杯和剩余盐水的质量 ⑤测出空烧杯的质量 ⑥根据实验数据计算盐水的密度

A.①②③④⑥ B.⑤①②③⑥

C.①②④③⑤⑥ D.⑤①②④③⑥

14.小梦参加了5月份的实验操作考试。下表中记录的是小梦与其他三位同学测出的小石块密度(注:经查密度表可知,石块的密度为2.50 g/cm3)。下列说法正确的是(D)

考生 小梦 小满 李明 张扬

小石块的密度 2.45 g/cm3 2.52 g/cm3 2.56 g/cm3 2.60 g/cm3

A.四位考生的实验都失败了,因为密度表中石块的密度为2.50 g/cm3

B.只有小满的数据可以接受,因为他的数据最接近密度表中的数据

C.只有张扬的数据不可以接受,因为他的数据偏差

D.只要实验操作正确,数据真实,上述数据均有效

三、实验题

15.在课外实践活动中,小明做了以下实验:

调节天平时,发现指针位置如图甲所示,此时应将右端的平衡螺母向__右__调,使天平平衡。测量李子质量时,天平右盘内砝码的质量和游码在标尺上的位置如图乙所示,则李子质量是__21.0__g。往量筒中注入60 mL的水,将该李子浸没在水中后,水面位置如图丙所示,则李子的体积是__20__ cm3,密度是__1.05__ g/cm3。

16.在用天平和量筒测量一小块大理石密度的实验过程中:

(1)使用托盘天平前要对天平进行调节,步骤如下:

①组装好天平,把天平放在__水平__工作台面上;

②把游码置于标尺左端的__零刻度线__处;

③调节天平的平衡螺母,使天平横梁水平平衡。

(2)实验过程:

用调好的天平测大理石的质量,当右盘中所加砝码和游码位置如图甲所示时,天平平衡,则此大理石的质量是__43.2__ g。在量筒内装有一定量的水,该大理石放入前、后的情况如图乙所示,则大理石的体积是____15__ cm3,此大理石的密度是__2.88×103__ kg/m3。

(3)大理石放在水中时会吸水,由此判断,用此测量方法测得的密度值与它的真实值相比__偏大__(选填“偏大”“偏小”或“一样大”)。

17.下面是小李同学和小张同学设计的“测食用油密度”的实验方案,请完善他们的方案,并回答下面的问题。

(1)小李同学的方案:用调节平衡的天平测出空烧杯的质量m1,向烧杯内倒入适量食用油再测出烧杯和食用油的总质量m2。然后把烧杯内的食用油全部倒入量筒内,读出量筒内食用油的体积为V1。其测得的食用油密度的表达式为__m2-m1V1__。

(2)小张同学的方案:在烧杯内倒入适量油,用调节平衡的天平测出烧杯和食用油的总质量m3,然后将烧杯内部分食用油倒入量筒,再测出烧杯和剩余食用油的总质量m4,读出量筒内食用油的体积V2,其测得的食用油密度的表达式为__m3-m4V2__。

(3)请你对上述两种实验方案进行评估,按__小张__同学的实验方案进行测量,实验误差可能小一些。

(4)如图所示是按小张同学的实验方案进行某次实验的情况,请将实验的数据及测量结果填入表中。

烧杯和食用油的总质量/g

烧杯和剩余油的总质量/g

倒出油的体积/cm3

油的密度/(kg/m3)

34.1 17.3 20 0.84×103

四、计算题

18.一个空瓶子的质量为200 g,装满水后的总质量为700 g,如果在空瓶盛某种金属碎片若干,使金属与瓶子质量为1 000 g;然后再装满水,则瓶子、水、金属片三者的总质量为1 409 g。试求:

物质 金 铅 铜 铁 铝

密度/(g•cm-3) 19.3 11.3 8.9 7.9 2.7

(1)瓶子的容积;

(2)金属碎片的体积;

(3)金属碎片的密度,该金属片最可能是哪种金属。

解:(1)依题意,第一次满瓶水的质量m5=m2-m1=700 g-200 g=500 g,所以瓶内水的体积即瓶子的容积V1=m5ρ水=500 g1 g/cm3=500 cm3

(2)第二次瓶内水的质量m6=m4-m3=1 409 g-1 000 g=409 g,所以第二次瓶内水的体积V2=m6ρ水=409 g1 g/cm3=409 cm3,所以金属碎片的体积V=V1-V2=500 cm3-409 cm3=91 cm3

(3)金属碎片的质量m=m3-m1=1 000 g-200 g=800 g,金属片的密度ρ=mV=800 g91 cm3≈8.79 g/cm3,故该金属片最可能是铜。

给我几道典型的物理中考压轴题,测物体密度跟测未知电阻都是缺了测 ...

1、弹簧测量计,细线,小石块,水,测石块密度

2、量筒,水,小玻璃瓶(可以放进量筒),测玻璃的密度;

3、电源、滑动变阻器、安培表、已知阻值的电阻、开关、导线,测未知电阻阻值

4、电源、滑动变阻器、伏特表、已知阻值电阻、开关、导线、测未知电阻阻值

初三物理知识重点和笔记

对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。学习需要持之以恒。下面是我给大家整理的一些 九年级物理 的知识点,希望对大家有所帮助。

九年级物理知识点

【电学部分】

1、电流强度:I=Q电量/t

2、电阻:R=ρL/S

3、欧姆定律:I=U/R

中考物理必考题型

沈阳市:满分85分

一、选择题(共21分。其中1~6题为单选题,每小题2分。7~9小题为多选题,每小题3分,多选、错选不得分,漏选得1分)

二、填空题(每空1分,共18分)

三、作图题(共4分)

四、简答题(共4分)

五、计算题(共18分。要求写出必要的文字说明、公式、主要的运算过程、数值和单位)

六、实验、探究题(共20分) 各省一般都差不多,主要是:

1、选择题

2、填空题

3、做图与简答题

4、实验与探究题

5、计算题

中考数学压轴题120道

一、图形运动产生的面积问题

知识点睛

研究_基本_图形

分析运动状态:

①由起点、终点确定t的范围;

②对t分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置.

分段画图,选择适当方法表达面积.

二、精讲精练

已知,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上,沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点与点重合,点N到达点时运动终止),过点M、N分别作边的垂线,与△ABC的其他边交于P、Q两点,线段MN运动的时间为秒.

(1)线段MN在运动的过程中,为何值时,四边形MNQP恰为矩形?并求出该矩形的面积.

(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间变化的函数关系式,并写出自变量t的取值范围.

1题图 2题图

如图,等腰梯形ABCD中,AB∥CD,AB=, CD=,高CE=,对角线AC、BD交于点H.平行于线段BD的两条直线MN、RQ同时从点A出发,沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G,当直线RQ到达点C时,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的面积为,被直线RQ扫过的面积为,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为x秒.

(1)填空:∠AHB=____________;AC=_____________;

(2)若,求x.

如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动,当点Q到达点B时,点P、Q同时停止运动.过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ'R.设点Q的运动时间为t(s),△PQ'R与△PAR重叠部分的面积为S(cm2).

(1)t为何值时,点Q' 恰好落在AB上?

(2)求S与t的函数关系式,并写出t的取值范围.

(3)S能否为?若能,求出此时t的值;

若不能,请说明理由.

如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm,动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动.以AP为边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形APDE和梯形BCFQ重叠部分的面积为Scm2.

(1)当t=_____s时,点P与点Q重合;

(2)当t=_____s时,点D在QF上;

(3)当点P在Q,B两点之间(不包括Q,B两点)时,

求S与t之间的函数关系式.

如图,在平面直角坐标系中,已知点A(0,1)、D(-2,0),作直线AD并以线段AD为一边向上作正方形ABCD.

(1)填空:点B的坐标为________,点C的坐标为_________.

(2)若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.

如图,在平面直角坐标系xOy中,已知直线l1:y=x与直线l2:y=-x+6相交于点M,直线l2与x轴相交于点N.

(1)求M,N的坐标.

(2)已知矩形ABCD中,AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD与△OMN重叠部分的面积为S,移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时结束).求S与自变量t之间的函数关系式,并写出相应的自变量t的取值范围.

二、二次函数中的存在性问题

一、知识点睛

解决“二次函数中存在性问题”的基本步骤:

①画图分析.研究确定图形,先画图解决其中一种情形.

②分类讨论.先验证①的结果是否合理,再找其他分类,类比第一种情形求解.

③验证取舍.结合点的运动范围,画图或推理,对结果取舍.

二、精讲精练

如图,已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于A、B两点. 若以AB为直角边的△PAB与△OAB相似,请求出所有符合条件的点P的坐标.

抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.点P在抛物线上,直线PQ//BC交x轴于点Q,连接BQ.

(1)若含45°角的直角三角板如图所示放置,其中一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求直线BQ的函数解析式;

(2)若含30°角的直角三角板的一个顶点与点C重合,直角顶点D在直线BQ上(点D不与点Q重合),另一个顶点E在PQ上,求点P的坐标.

如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD=10,

OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.

(1)若抛物线经过A、B两点,求该抛物线的解析式:______________;

(2)若点M是直线AB上方抛物线上的一个动点,

作MN⊥x轴于点N.是否存在点M,使△AMN

与△ACD相似?若存在,求出点M的坐标;

若不存在,说明理由.

已知抛物线经过A、B、C三点,点P(1,k)在直线BC:y=x3上,若点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的四边形为平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.

抛物线与y轴交于点C,与直线y=x交于A(-2,-2)、B(2,2)两点.如图,线段MN在直线AB上移动,且,若点M的横坐标为m,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以P、M、Q、N为顶点的四边形否为平行四边形?若能,请求出m的值;若不能,请说明理由.

三、二次函数与几何综合

一、知识点睛

“二次函数与几何综合”思考流程:

整合信息时,下面两点可为我们提供便利:

①研究函数表达式.二次函数关注四点一线,一次函数关注k、b;

②)关键点坐标转线段长.找特殊图形、特殊位置关系,寻求边和角度信息.

二、精讲精练

如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.

(1)求抛物线的解析式.

(2)在抛物线的对称轴上是否存在点M,使|MA-MB|?

若存在,求出点M的坐标;若不存在,请说明理由.

如图,已知抛物线y=ax2-2ax-b(a>0)与x轴交于A、B两点,点A在点B的右侧,且点B的坐标为(-1,0),与y轴的负半轴交于点C,顶点为D.连接AC、CD,∠ACD=90°.

(1)求抛物线的解析式;

(2)点E在抛物线的对称轴上,点F在抛物线上,

且以B、A、F、E四点为顶点的四边形为平行四边形,求点的坐标.

如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.

(1)求该抛物线的解析式;

(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.设△PDE的周长为l,

点P的横坐标为x,求l关于x的函数关系式,并求出l的值.

已知,抛物线经过A(-1,0),C(2,)两点,

与x轴交于另一点B.

(1)求此抛物线的解析式;

(2)若抛物线的顶点为M,点P为线段OB上一动点 (不与点B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,MQ=,求y2与x的函数关系式,

并直接写出自变量x的取值范围.

已知抛物线的对称轴为直线,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,-3).

(1)求抛物线的解析式;

(2)若点P在抛物线上运动(点P异于点A),

①如图1,当△PBC的面积与△ABC的面积相等时,求点P的坐标;

②如图2,当∠PCB =∠BCA时,求直线CP的解析式.

四、中考数学压轴题专项训练

1.如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1),B(3,1).动点P从点O出发,沿x轴正方向以每秒1个单位长度的速度移动.过点P作PQ⊥OA,垂足为Q.设点P移动的时间为t秒(0

△OPQ与直角梯形OABC重叠部分的面积为S.

(1)求经过O,A,B三点的抛物线解析式.

(2)求S与t的函数关系式.

(3)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

2.如图,抛物线与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.

(1)求抛物线的解析式及点D的坐标.

(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标.

(3)过点P作直线CD的垂线,垂足为Q.若将△CPQ沿CP翻折,点Q的对应点为Q′,是否存在点P,使点Q′恰好在x轴上?若存在,求出此时点P的坐标;若不存在,请说明理由.

3.(11分)如图,已知直线与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.

(1)请直接写出C,D两点的坐标,并求出抛物线的解析式;

(2)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;

(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.

4.(11分)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于点D.

(1)求抛物线的解析式;

(2)点K为线段AB上一动点,过点K作x轴的垂线,交直

线CD于点H,交抛物线于点G,求线段HG长度的值;

(3)在直线l上取点M,在抛物线上取点N,使以A,C,M,

N为顶点的四边形是平行四边形,求点N的坐标.

5.(11分)如图,在平面直角坐标系中,直线与

抛物线交于A,B两点,点A在x轴上,点B的横坐标为-8.

(1)求抛物线的解析式.

(2)点P是直线AB上方的抛物线上一动点(不与点A,B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.

①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的值.

②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,

正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,

直接写出对应的点P的坐标.

6.(11分)如图1,点A为抛物线C1:的顶点,点B的坐标为

(1,0),直线AB交抛物线C1于另一点C.

(1)求点C的坐标;

(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于点F,交抛物线C1于点G,若FG:DE=4:3,求a的值;

(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为P,交x轴负半轴于点M,交射线AB于点N,NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.

附:参考答案

一、图形运动产生的面积问题

1. (1)当t=时,四边形MNQP恰为矩形.此时,该矩形的面积为平方厘米.

(2) 当0<t≤1时,;当1<t≤2时,;

当2<t<3时,

2.(1)90°;4 (2)x=2.

3.(1)当t=时,点Q' 恰好落在AB上.

(2)当0<t≤时,;当<t≤6时,

(3)由(2)问可得,当0<t≤时, ;

当<t≤6时,;

解得,或,此时.

4.(1)1 (2)(3)当1<t≤时,;

当<t<2时,.

5.(1)(﹣1,3),(﹣3,2) (2)当0<t≤时,;当<t≤1时,;

当1<t≤时,.

6.(1)M(4,2) N(6,0)(2)当0≤t≤1时,;

当1<t≤4时,;

当4<t≤5时,;

当5<t≤6时,;

当6<t≤7时,

二、二次函数中的存在性问题

1.解:由题意,设OA=m,则OB=2m;当∠BAP=90°时,

△BAP∽△AOB或△BAP∽△BOA;

若△BAP∽△AOB,如图1,

可知△PMA∽△AOB,相似比为2:1;则P1(5m,2m),

代入,可知,

若△BAP∽△BOA,如图2,

可知△PMA∽△AOB,相似比为1:2;则P2(2m,),

代入,可知,

当∠ABP=90°时,△ABP∽△AOB或△ABP∽△BOA;

若△ABP∽△AOB,如图3,

可知△PMB∽△BOA,相似比为2:1;则P3(4m,4m),

代入,可知,

若△ABP∽△BOA,如图4,

可知△PMB∽△BOA,相似比为1:2;则P4(m,),

代入,可知,

2.解:(1)由抛物线解析式可得B点坐标(1,3).

要求直线BQ的函数解析式,只需求得点Q坐标即可,即求CQ长度.

过点D作DG⊥x轴于点G,过点D作DF⊥QP于点F.

则可证△DCG≌△DEF.则DG=DF,∴矩形DGQF为正方形.

则∠DQG=45°,则△BCQ为等腰直角三角形.∴CQ=BC=3,此时,Q点坐标为(4,0)

可得BQ解析式为y=-x+4.

(2)要求P点坐标,只需求得点Q坐标,然后根据横坐标相同来求点P坐标即可.

而题目当中没有说明∠DCE=30°还是∠DCE=60°,所以分两种情况来讨论.

当∠DCE=30°时,

a)过点D作DH⊥x轴于点H,过点D作DK⊥QP于点K.

则可证△DCH∽△DEK.则,

在矩形DHQK中,DK=HQ,则.

在Rt△DHQ中,∠DQC=60°.则在Rt△BCQ中,∴CQ=,此时,Q点坐标为(1+,0)

则P点横坐标为1+.代入可得纵坐标.∴P(1+,).

b)又P、Q为动点,∴可能PQ在对称轴左侧,与上一种情形关于对称轴对称.

由对称性可得此时点P坐标为(1-,)

当∠DCE=60°时,

过点D作DM⊥x轴于点M,过点D作DN⊥QP于点N.

则可证△DCM∽△DEN.则,

在矩形DMQN中,DN=MQ,则.

在Rt△DMQ中,∠DQM=30°.则在Rt△BCQ中,

∴CQ=BC=,此时,Q点坐标为(1+,0)

则P点横坐标为1+.代入可得纵坐标.∴P(1+,).

b)又P、Q为动点,∴可能PQ在对称轴左侧,与上一种情形关于对称轴对称.

由对称性可得此时点P坐标为(1-,)

综上所述,P点坐标为(1+,),(1-,),(1+,)或(1-,).

3.解:(1)∵AB=BC=10,OB=8 ∴在Rt△OAB中,OA=6 ∴ A(6,0)

将A(6,0),B(0,-8)代入抛物线表达式,得,

(2)存在:

如果△AMN与△ACD相似,则或

设M(0

假设点M在x轴下方的抛物线上,如图1所示:

当时,,

即∴∴

如图2验证一下

当时,,即

∴(舍)

2)如果点M在x轴上方的抛物线上:

当时,,即 ∴ ∴M

此时, ∴ ∴△AMN∽△ACD ∴M满足要求

当时,,即 ∴m=10(舍)

综上M1,M2

4.解:满足条件坐标为:

思路分析:A、M、N、P四点中点A、点P为顶点,则AP可为平行四边形边、对角线;

(1)如图,当AP为平行四边形边时,平移AP;

∵点A、P纵坐标差为2 ∴点M、N纵坐标差为2;

∵点M的纵坐标为0 ∴点N的纵坐标为2或-2

①当点N的纵坐标为2时

解: 得

又∵点A、P横坐标差为2 ∴点M的坐标为: 、

②当点N的纵坐标为-2时

解: 得

又∵点A、P横坐标差为2 ∴点M的坐标为: 、

(2)当AP为平行四边形边对角线时; 设M5(m,0)

MN一定过AP的中点(0,-1)

则N5(-m,-2),N5在抛物线上 ∴

(负值不符合题意,舍去)

∴ ∴

综上所述:

符合条件点P的坐标为:

5.解:分析题意,可得:MP∥NQ,若以P、M、N、Q为顶点的四边形为平行四边形,只需MP=NQ即可。由题知:,,,

故只需表达MP、NQ即可.表达分下列四种情况:

①如图1,,,令PM=QN,

解得:(舍去),;

②如图2,,,令PM=QN,

解得:(舍去),;

③如图3,,,令PM=QN,

解得:,(舍去);

④如图4,,,令PM=QN,

解得:,(舍去);

综上,m的值为、、、.

三、二次函数与几何综合

解:(1)令x=0,则y=4, ∴点C的坐标为(0,4),

∵BC∥x轴,∴点B,C关于对称轴对称,

又∵抛物线y=ax2-5ax+4的对称轴是直线,即直线

∴点B的坐标为(5,4),∴AC=BC=5,

在Rt△ACO中,OA=,∴点A的坐标为A(,0),

∵抛物线y=ax2-5ax+4经过点A,∴9a+15a+4=0,解得, ∴抛物线的解析式是

(2)存在,M(,)

理由:∵B,C关于对称轴对称,∴MB=MC,∴;

∴当点M在直线AC上时,值,

设直线AC的解析式为,则,解得,∴

令,则,∴M(,)

2、解:(1)∵抛物线过点B(,0),

∴a+2a-b=0,∴b=3a,∴

令y=0,则x=或x=3,∴A(3,0),∴OA=3,

令x=0,则y=-3a,∴C(0,a),∴OC=3a

∵D为抛物线的顶点,∴D(1,4a)

过点D作DM⊥y轴于点M,则∠AOC=∠CMD=90°,

又∵∠ACD+∠MCD=∠AOC+∠1,∠ACD=∠AOC=90°

∴∠MCD=∠1 ,∴△AOC∽△CMD,∴,

∵D(1,4a),∴DM=1,OM=4a,∴CM=a

∴,∴,∵a>0,∴a=1

∴抛物线的解析式为:

(2)当AB为平行四边形的边时,则BA∥EF,并且EF= BA =4

由于对称轴为直线x=1,∴点E的横坐标为1,∴点F的横坐标为5或者3

将x=5代入得y=12,∴F(5,12).将x=-3代入得y=12,∴F(-3,12).

当AB为平行四边形的对角线时,点F即为点D, ∴F(1,4).

综上所述,点F的坐标为(5,12),(3,12)或(1,4).

3、解:(1)对于,当y=0,x=2;当x=8时,y=.

∴A点坐标为(2,0),B点坐标为

由抛物线经过A、B两点,得

解得

(2)设直线与y轴交于点M

当x=0时,y=. ∴OM=.

∵点A的坐标为(2,0),∴OA=2,∴AM=

∴OM:OA:AM=3:4:5.

由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOM ∽△PED.

∴DE:PE:PD=3:4:5

∵点P是直线AB上方的抛物线上一动点,

∴PD=

由题意知:

4、解:(1) ∵抛物线y1=ax22axb经过A(1,0),C(0,)两点,

∴,∴,∴抛物线的解析式为y1= x2x

(2)解法一:过点M作MN⊥AB交AB于点N,连接AM

由y1= x2x可知顶点M(1,2) ,A(1,0),B(3,0),N(1,0)

∴AB=4,MN=BN=AN=2,AM=MB=.

∴△AMN和△BMN为等腰直角三角形.

∵∠MPA+∠QPB=∠MPA +∠PMA=135°

∴∠QPB=∠PMA

又∵∠QBP=∠PAM=45°∴△QPB∽△PMA

∴ 将AM=,AP=x+1,BP=3-x,BQ=代入,

可得,即.

∵点P为线段OB上一动点 (不与点B重合)∴0x<3

则y2与x的函数关系式为y2=x2x(0x<3)

解法二:

过点M作MN⊥AB交AB于点N.

由y1= x2x易得M(1,2),N(1,0),A(1,0),B(3,0),

∴AB=4,MN=BN=2,MB=2,MBN=45.

根据勾股定理有BM 2BN 2=PM 2PN 2. ∴…①,

又MPQ=45=MBP,∴△MPQ∽△MBP,∴=y22

由、得y2=x2x.

∵0x<3,∴y2与x的函数关系式为y2=x2x(0x<3)

5、解:(1)由题意,得,解得

∴抛物线的解析式为.

(2)①令,解得 ∴B(3, 0)

则直线BC的解析式为 当点P在x轴上方时,如图1,

过点A作直线BC的平行线交抛物线于点P,∴设直线AP的解析式为,

∵直线AP过点A(1,0),∴直线AP的解析式为,交y轴于点.

解方程组,得 ∴点

当点P在x轴下方时,如图1,

根据点,可知需把直线BC向下平移2个单位,此时交抛物线于点,

得直线的解析式为,

解方程组,得

综上所述,点P的坐标为:

②过点B作AB的垂线,交CP于点F.如图2,∵

∴OB=OC,∴∠OCB=∠OBC=45° ∴∠CBF=∠ABC=45°

又∵∠PCB=∠BCA,BC=BC ∴△ACB≌△FCB

∴BF=BA=2,则点F(3,-2)又∵CP过点F,点C ∴直线CP的解析式为.

四、中考数学压轴题专项训练答案

1.(1);

(2);

(3)t=1或2.

2.(1),;

(2);

(3)存在,点P的坐标为.

3.(1),;

(2);

(3)15.

4.(1);

(2);

(3).

5.(1);

(2)①,当时,;

②.

6.(1);

(2); (3).

免费下载这份资料?立即下载

2017中考物理压轴题及答案

一、填空题

1.用托盘天平测铜块的质量:应先将天平放在水平桌面上,游码移至标尺左端的__零__刻度线处,调节平衡螺母使天平平衡;然后将铜块放入左盘,当右盘所加砝码和游码位置如图所示时天平再次平衡,铜块质量为__31__ g。

2.浏阳腐乳以其口感细腻、味道纯正而远近闻名,深受广大消费者喜爱。现测得一块腐乳质量约为10 g,体积约为8 cm3,则其密度为__1.25__ g/cm3。若吃掉一半,剩余部分密度将__不变__(选填“变大”“变小”或“不变”)。

3.一个空瓶子的质量是150 g,当装满水时,瓶和水的总质量是400 g;当装满另一种液体时,瓶和液体的总质量是350 g。则这个瓶子的容积是__250__cm3,液体的密度是__0.8×103__ kg/m3。

4.小明在“测量液体密度的实验”中得到的数据如下表,根据表中数据可得到液体密度为__1_g/cm3__,容器的质量为__4.9_g__。

实验次数 1 2 3 4

液体体积/cm3 5.8 7.9 16.7 35.1

液体和容器的总质量/g 10.7 12.8 21.6 40.0

二、选择题

5.如图是荣获金奖的扬州玉器“八角素瓶”,玉器在加工过程中不发生变化的是(C)

A.质量 B.体积

C.密度 D.重力

6.水是一种重要的资源,具有一些奇特的性质,如水结成冰后体积会变大,该过程中一定不变的是(C)

A.密度 B.温度 C.质量 D.内能

7.鸡尾酒是由几种不同的酒调配而成的,经过调配后,不同颜色的酒界面分明,这是由于不同颜色的酒具有不同的(D)

A.重力 B.质量 C.体积 D.密度

8不漏气的橡皮氢气球由地面上升过程中,球内气体的质量与密度的变化情况是(B)

A.质量增加,密度增加 B.质量不变,密度减小

C.质量减小,密度减小 D.质量不变,密度不变

9.从火炉中拿出被烧红的铁块,降温后变大的物理量是(D)

A.内能 B.质量 C.体积 D.密度

10学完密度知识后,一位普通中学生对自己的身体体积进行了估算,下列估算值最接近实际的是(B)

A.30 dm3 B.60 dm3

C.100 dm3 D.120 dm3

11.小玉同学在探究“同种物质的质量与体积的关系”的实验中,测出几组数据,根据这些数据绘出图象。如图所示四幅图象中,能正确反映“质量与体积关系”的图象是(B)

12.a、b两个实心物体的体积与质量的关系如图所示,下列说法中正确的是(B)

A.a物质的密度比b的大

B.b物质的密度是2×103 kg/m3

C.b物质的密度是a的2倍

D.a、b的密度与它们的质量、体积有关

13.为了测盐水的密度,某实验小组制订了如下的实验计划,以下实验步骤安排最合理的是(A)

①在烧杯中装入适量盐水,测出它们的总质量 ②将烧杯中一部分盐水倒入量筒中 ③测出量筒中盐水的体积 ④测出烧杯和剩余盐水的质量 ⑤测出空烧杯的质量 ⑥根据实验数据计算盐水的密度

A.①②③④⑥ B.⑤①②③⑥

C.①②④③⑤⑥ D.⑤①②④③⑥

14.小梦参加了5月份的实验操作考试。下表中记录的是小梦与其他三位同学测出的小石块密度(注:经查密度表可知,石块的密度为2.50 g/cm3)。下列说法正确的是(D)

考生 小梦 小满 李明 张扬

小石块的密度 2.45 g/cm3 2.52 g/cm3 2.56 g/cm3 2.60 g/cm3

A.四位考生的实验都失败了,因为密度表中石块的密度为2.50 g/cm3

B.只有小满的数据可以接受,因为他的数据最接近密度表中的数据

C.只有张扬的数据不可以接受,因为他的数据偏差

D.只要实验操作正确,数据真实,上述数据均有效

三、实验题

15.在课外实践活动中,小明做了以下实验:

调节天平时,发现指针位置如图甲所示,此时应将右端的平衡螺母向__右__调,使天平平衡。测量李子质量时,天平右盘内砝码的质量和游码在标尺上的位置如图乙所示,则李子质量是__21.0__g。往量筒中注入60 mL的水,将该李子浸没在水中后,水面位置如图丙所示,则李子的体积是__20__ cm3,密度是__1.05__ g/cm3。

16.在用天平和量筒测量一小块大理石密度的实验过程中:

(1)使用托盘天平前要对天平进行调节,步骤如下:

①组装好天平,把天平放在__水平__工作台面上;

②把游码置于标尺左端的__零刻度线__处;

③调节天平的平衡螺母,使天平横梁水平平衡。

(2)实验过程:

用调好的天平测大理石的质量,当右盘中所加砝码和游码位置如图甲所示时,天平平衡,则此大理石的质量是__43.2__ g。在量筒内装有一定量的水,该大理石放入前、后的情况如图乙所示,则大理石的体积是____15__ cm3,此大理石的密度是__2.88×103__ kg/m3。

(3)大理石放在水中时会吸水,由此判断,用此测量方法测得的密度值与它的真实值相比__偏大__(选填“偏大”“偏小”或“一样大”)。

17.下面是小李同学和小张同学设计的“测食用油密度”的实验方案,请完善他们的方案,并回答下面的问题。

(1)小李同学的方案:用调节平衡的天平测出空烧杯的质量m1,向烧杯内倒入适量食用油再测出烧杯和食用油的总质量m2。然后把烧杯内的食用油全部倒入量筒内,读出量筒内食用油的体积为V1。其测得的食用油密度的表达式为__m2-m1V1__。

(2)小张同学的方案:在烧杯内倒入适量油,用调节平衡的天平测出烧杯和食用油的总质量m3,然后将烧杯内部分食用油倒入量筒,再测出烧杯和剩余食用油的总质量m4,读出量筒内食用油的体积V2,其测得的食用油密度的表达式为__m3-m4V2__。

(3)请你对上述两种实验方案进行评估,按__小张__同学的实验方案进行测量,实验误差可能小一些。

(4)如图所示是按小张同学的实验方案进行某次实验的情况,请将实验的数据及测量结果填入表中。

烧杯和食用油的总质量/g

烧杯和剩余油的总质量/g

倒出油的体积/cm3

油的密度/(kg/m3)

34.1 17.3 20 0.84×103

四、计算题

18.一个空瓶子的质量为200 g,装满水后的总质量为700 g,如果在空瓶盛某种金属碎片若干,使金属与瓶子质量为1 000 g;然后再装满水,则瓶子、水、金属片三者的总质量为1 409 g。试求:

物质 金 铅 铜 铁 铝

密度/(g•cm-3) 19.3 11.3 8.9 7.9 2.7

(1)瓶子的容积;

(2)金属碎片的体积;

(3)金属碎片的密度,该金属片最可能是哪种金属。

解:(1)依题意,第一次满瓶水的质量m5=m2-m1=700 g-200 g=500 g,所以瓶内水的体积即瓶子的容积V1=m5ρ水=500 g1 g/cm3=500 cm3

(2)第二次瓶内水的质量m6=m4-m3=1 409 g-1 000 g=409 g,所以第二次瓶内水的体积V2=m6ρ水=409 g1 g/cm3=409 cm3,所以金属碎片的体积V=V1-V2=500 cm3-409 cm3=91 cm3

(3)金属碎片的质量m=m3-m1=1 000 g-200 g=800 g,金属片的密度ρ=mV=800 g91 cm3≈8.79 g/cm3,故该金属片最可能是铜。

给我几道典型的物理中考压轴题,测物体密度跟测未知电阻都是缺了测 ...

1、弹簧测量计,细线,小石块,水,测石块密度

2、量筒,水,小玻璃瓶(可以放进量筒),测玻璃的密度;

3、电源、滑动变阻器、安培表、已知阻值的电阻、开关、导线,测未知电阻阻值

4、电源、滑动变阻器、伏特表、已知阻值电阻、开关、导线、测未知电阻阻值

初三物理知识重点和笔记

对世界上的一切学问与知识的掌握也并非难事,只要持之以恒地学习,努力掌握规律,达到熟悉的境地,就能融会贯通,运用自如。学习需要持之以恒。下面是我给大家整理的一些 九年级物理 的知识点,希望对大家有所帮助。

九年级物理知识点

【电学部分】

1、电流强度:I=Q电量/t

2、电阻:R=ρL/S

3、欧姆定律:I=U/R

中考物理必考题型

沈阳市:满分85分

一、选择题(共21分。其中1~6题为单选题,每小题2分。7~9小题为多选题,每小题3分,多选、错选不得分,漏选得1分)

二、填空题(每空1分,共18分)

三、作图题(共4分)

四、简答题(共4分)

五、计算题(共18分。要求写出必要的文字说明、公式、主要的运算过程、数值和单位)

六、实验、探究题(共20分) 各省一般都差不多,主要是:

1、选择题

2、填空题

3、做图与简答题

4、实验与探究题

5、计算题

中考数学压轴题120道

一、图形运动产生的面积问题

知识点睛

研究_基本_图形

分析运动状态:

①由起点、终点确定t的范围;

②对t分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置.

分段画图,选择适当方法表达面积.

二、精讲精练

已知,等边三角形ABC的边长为4厘米,长为1厘米的线段MN在△ABC的边AB上,沿AB方向以1厘米/秒的速度向B点运动(运动开始时,点与点重合,点N到达点时运动终止),过点M、N分别作边的垂线,与△ABC的其他边交于P、Q两点,线段MN运动的时间为秒.

(1)线段MN在运动的过程中,为何值时,四边形MNQP恰为矩形?并求出该矩形的面积.

(2)线段MN在运动的过程中,四边形MNQP的面积为S,运动的时间为t.求四边形MNQP的面积S随运动时间变化的函数关系式,并写出自变量t的取值范围.

1题图 2题图

如图,等腰梯形ABCD中,AB∥CD,AB=, CD=,高CE=,对角线AC、BD交于点H.平行于线段BD的两条直线MN、RQ同时从点A出发,沿AC方向向点C匀速平移,分别交等腰梯形ABCD的边于M、N和R、Q,分别交对角线AC于F、G,当直线RQ到达点C时,两直线同时停止移动.记等腰梯形ABCD被直线MN扫过的面积为,被直线RQ扫过的面积为,若直线MN平移的速度为1单位/秒,直线RQ平移的速度为2单位/秒,设两直线移动的时间为x秒.

(1)填空:∠AHB=____________;AC=_____________;

(2)若,求x.

如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动,当点Q到达点B时,点P、Q同时停止运动.过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ'R.设点Q的运动时间为t(s),△PQ'R与△PAR重叠部分的面积为S(cm2).

(1)t为何值时,点Q' 恰好落在AB上?

(2)求S与t的函数关系式,并写出t的取值范围.

(3)S能否为?若能,求出此时t的值;

若不能,请说明理由.

如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm,动点P从点A出发,沿AB方向以1cm/s的速度向点B运动,动点Q从点B同时出发,沿BA方向以1cm/s的速度向点A运动.当点P到达点B时,P,Q两点同时停止运动.以AP为边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设点P的运动时间为ts,正方形APDE和梯形BCFQ重叠部分的面积为Scm2.

(1)当t=_____s时,点P与点Q重合;

(2)当t=_____s时,点D在QF上;

(3)当点P在Q,B两点之间(不包括Q,B两点)时,

求S与t之间的函数关系式.

如图,在平面直角坐标系中,已知点A(0,1)、D(-2,0),作直线AD并以线段AD为一边向上作正方形ABCD.

(1)填空:点B的坐标为________,点C的坐标为_________.

(2)若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.

如图,在平面直角坐标系xOy中,已知直线l1:y=x与直线l2:y=-x+6相交于点M,直线l2与x轴相交于点N.

(1)求M,N的坐标.

(2)已知矩形ABCD中,AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动.设矩形ABCD与△OMN重叠部分的面积为S,移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时结束).求S与自变量t之间的函数关系式,并写出相应的自变量t的取值范围.

二、二次函数中的存在性问题

一、知识点睛

解决“二次函数中存在性问题”的基本步骤:

①画图分析.研究确定图形,先画图解决其中一种情形.

②分类讨论.先验证①的结果是否合理,再找其他分类,类比第一种情形求解.

③验证取舍.结合点的运动范围,画图或推理,对结果取舍.

二、精讲精练

如图,已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点,将直线y=-2x沿y轴向上平移,分别交x轴、y轴于A、B两点. 若以AB为直角边的△PAB与△OAB相似,请求出所有符合条件的点P的坐标.

抛物线与y轴交于点A,顶点为B,对称轴BC与x轴交于点C.点P在抛物线上,直线PQ//BC交x轴于点Q,连接BQ.

(1)若含45°角的直角三角板如图所示放置,其中一个顶点与点C重合,直角顶点D在BQ上,另一个顶点E在PQ上,求直线BQ的函数解析式;

(2)若含30°角的直角三角板的一个顶点与点C重合,直角顶点D在直线BQ上(点D不与点Q重合),另一个顶点E在PQ上,求点P的坐标.

如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴负半轴上,且OD=10,

OB=8.将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合.

(1)若抛物线经过A、B两点,求该抛物线的解析式:______________;

(2)若点M是直线AB上方抛物线上的一个动点,

作MN⊥x轴于点N.是否存在点M,使△AMN

与△ACD相似?若存在,求出点M的坐标;

若不存在,说明理由.

已知抛物线经过A、B、C三点,点P(1,k)在直线BC:y=x3上,若点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的四边形为平行四边形?若存在,请求出点M的坐标;若不存在,请说明理由.

抛物线与y轴交于点C,与直线y=x交于A(-2,-2)、B(2,2)两点.如图,线段MN在直线AB上移动,且,若点M的横坐标为m,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q.以P、M、Q、N为顶点的四边形否为平行四边形?若能,请求出m的值;若不能,请说明理由.

三、二次函数与几何综合

一、知识点睛

“二次函数与几何综合”思考流程:

整合信息时,下面两点可为我们提供便利:

①研究函数表达式.二次函数关注四点一线,一次函数关注k、b;

②)关键点坐标转线段长.找特殊图形、特殊位置关系,寻求边和角度信息.

二、精讲精练

如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.

(1)求抛物线的解析式.

(2)在抛物线的对称轴上是否存在点M,使|MA-MB|?

若存在,求出点M的坐标;若不存在,请说明理由.

如图,已知抛物线y=ax2-2ax-b(a>0)与x轴交于A、B两点,点A在点B的右侧,且点B的坐标为(-1,0),与y轴的负半轴交于点C,顶点为D.连接AC、CD,∠ACD=90°.

(1)求抛物线的解析式;

(2)点E在抛物线的对称轴上,点F在抛物线上,

且以B、A、F、E四点为顶点的四边形为平行四边形,求点的坐标.

如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.

(1)求该抛物线的解析式;

(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.设△PDE的周长为l,

点P的横坐标为x,求l关于x的函数关系式,并求出l的值.

已知,抛物线经过A(-1,0),C(2,)两点,

与x轴交于另一点B.

(1)求此抛物线的解析式;

(2)若抛物线的顶点为M,点P为线段OB上一动点 (不与点B重合),点Q在线段MB上移动,且∠MPQ=45°,设线段OP=x,MQ=,求y2与x的函数关系式,

并直接写出自变量x的取值范围.

已知抛物线的对称轴为直线,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,-3).

(1)求抛物线的解析式;

(2)若点P在抛物线上运动(点P异于点A),

①如图1,当△PBC的面积与△ABC的面积相等时,求点P的坐标;

②如图2,当∠PCB =∠BCA时,求直线CP的解析式.

四、中考数学压轴题专项训练

1.如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,1),B(3,1).动点P从点O出发,沿x轴正方向以每秒1个单位长度的速度移动.过点P作PQ⊥OA,垂足为Q.设点P移动的时间为t秒(0

△OPQ与直角梯形OABC重叠部分的面积为S.

(1)求经过O,A,B三点的抛物线解析式.

(2)求S与t的函数关系式.

(3)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.

2.如图,抛物线与x轴交于A(-1,0),B(4,0)两点,与y轴交于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.

(1)求抛物线的解析式及点D的坐标.

(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标.

(3)过点P作直线CD的垂线,垂足为Q.若将△CPQ沿CP翻折,点Q的对应点为Q′,是否存在点P,使点Q′恰好在x轴上?若存在,求出此时点P的坐标;若不存在,请说明理由.

3.(11分)如图,已知直线与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.

(1)请直接写出C,D两点的坐标,并求出抛物线的解析式;

(2)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;

(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.

4.(11分)如图,抛物线y=ax2+bx+c交x轴于点A(-3,0),点B(1,0),交y轴于点E(0,-3).点C是点A关于点B的对称点,点F是线段BC的中点,直线l过点F且与y轴平行.直线y=-x+m过点C,交y轴于点D.

(1)求抛物线的解析式;

(2)点K为线段AB上一动点,过点K作x轴的垂线,交直

线CD于点H,交抛物线于点G,求线段HG长度的值;

(3)在直线l上取点M,在抛物线上取点N,使以A,C,M,

N为顶点的四边形是平行四边形,求点N的坐标.

5.(11分)如图,在平面直角坐标系中,直线与

抛物线交于A,B两点,点A在x轴上,点B的横坐标为-8.

(1)求抛物线的解析式.

(2)点P是直线AB上方的抛物线上一动点(不与点A,B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.

①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的值.

②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,

正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,

直接写出对应的点P的坐标.

6.(11分)如图1,点A为抛物线C1:的顶点,点B的坐标为

(1,0),直线AB交抛物线C1于另一点C.

(1)求点C的坐标;

(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于点F,交抛物线C1于点G,若FG:DE=4:3,求a的值;

(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为P,交x轴负半轴于点M,交射线AB于点N,NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.

附:参考答案

一、图形运动产生的面积问题

1. (1)当t=时,四边形MNQP恰为矩形.此时,该矩形的面积为平方厘米.

(2) 当0<t≤1时,;当1<t≤2时,;

当2<t<3时,

2.(1)90°;4 (2)x=2.

3.(1)当t=时,点Q' 恰好落在AB上.

(2)当0<t≤时,;当<t≤6时,

(3)由(2)问可得,当0<t≤时, ;

当<t≤6时,;

解得,或,此时.

4.(1)1 (2)(3)当1<t≤时,;

当<t<2时,.

5.(1)(﹣1,3),(﹣3,2) (2)当0<t≤时,;当<t≤1时,;

当1<t≤时,.

6.(1)M(4,2) N(6,0)(2)当0≤t≤1时,;

当1<t≤4时,;

当4<t≤5时,;

当5<t≤6时,;

当6<t≤7时,

二、二次函数中的存在性问题

1.解:由题意,设OA=m,则OB=2m;当∠BAP=90°时,

△BAP∽△AOB或△BAP∽△BOA;

若△BAP∽△AOB,如图1,

可知△PMA∽△AOB,相似比为2:1;则P1(5m,2m),

代入,可知,

若△BAP∽△BOA,如图2,

可知△PMA∽△AOB,相似比为1:2;则P2(2m,),

代入,可知,

当∠ABP=90°时,△ABP∽△AOB或△ABP∽△BOA;

若△ABP∽△AOB,如图3,

可知△PMB∽△BOA,相似比为2:1;则P3(4m,4m),

代入,可知,

若△ABP∽△BOA,如图4,

可知△PMB∽△BOA,相似比为1:2;则P4(m,),

代入,可知,

2.解:(1)由抛物线解析式可得B点坐标(1,3).

要求直线BQ的函数解析式,只需求得点Q坐标即可,即求CQ长度.

过点D作DG⊥x轴于点G,过点D作DF⊥QP于点F.

则可证△DCG≌△DEF.则DG=DF,∴矩形DGQF为正方形.

则∠DQG=45°,则△BCQ为等腰直角三角形.∴CQ=BC=3,此时,Q点坐标为(4,0)

可得BQ解析式为y=-x+4.

(2)要求P点坐标,只需求得点Q坐标,然后根据横坐标相同来求点P坐标即可.

而题目当中没有说明∠DCE=30°还是∠DCE=60°,所以分两种情况来讨论.

当∠DCE=30°时,

a)过点D作DH⊥x轴于点H,过点D作DK⊥QP于点K.

则可证△DCH∽△DEK.则,

在矩形DHQK中,DK=HQ,则.

在Rt△DHQ中,∠DQC=60°.则在Rt△BCQ中,∴CQ=,此时,Q点坐标为(1+,0)

则P点横坐标为1+.代入可得纵坐标.∴P(1+,).

b)又P、Q为动点,∴可能PQ在对称轴左侧,与上一种情形关于对称轴对称.

由对称性可得此时点P坐标为(1-,)

当∠DCE=60°时,

过点D作DM⊥x轴于点M,过点D作DN⊥QP于点N.

则可证△DCM∽△DEN.则,

在矩形DMQN中,DN=MQ,则.

在Rt△DMQ中,∠DQM=30°.则在Rt△BCQ中,

∴CQ=BC=,此时,Q点坐标为(1+,0)

则P点横坐标为1+.代入可得纵坐标.∴P(1+,).

b)又P、Q为动点,∴可能PQ在对称轴左侧,与上一种情形关于对称轴对称.

由对称性可得此时点P坐标为(1-,)

综上所述,P点坐标为(1+,),(1-,),(1+,)或(1-,).

3.解:(1)∵AB=BC=10,OB=8 ∴在Rt△OAB中,OA=6 ∴ A(6,0)

将A(6,0),B(0,-8)代入抛物线表达式,得,

(2)存在:

如果△AMN与△ACD相似,则或

设M(0

假设点M在x轴下方的抛物线上,如图1所示:

当时,,

即∴∴

如图2验证一下

当时,,即

∴(舍)

2)如果点M在x轴上方的抛物线上:

当时,,即 ∴ ∴M

此时, ∴ ∴△AMN∽△ACD ∴M满足要求

当时,,即 ∴m=10(舍)

综上M1,M2

4.解:满足条件坐标为:

思路分析:A、M、N、P四点中点A、点P为顶点,则AP可为平行四边形边、对角线;

(1)如图,当AP为平行四边形边时,平移AP;

∵点A、P纵坐标差为2 ∴点M、N纵坐标差为2;

∵点M的纵坐标为0 ∴点N的纵坐标为2或-2

①当点N的纵坐标为2时

解: 得

又∵点A、P横坐标差为2 ∴点M的坐标为: 、

②当点N的纵坐标为-2时

解: 得

又∵点A、P横坐标差为2 ∴点M的坐标为: 、

(2)当AP为平行四边形边对角线时; 设M5(m,0)

MN一定过AP的中点(0,-1)

则N5(-m,-2),N5在抛物线上 ∴

(负值不符合题意,舍去)

∴ ∴

综上所述:

符合条件点P的坐标为:

5.解:分析题意,可得:MP∥NQ,若以P、M、N、Q为顶点的四边形为平行四边形,只需MP=NQ即可。由题知:,,,

故只需表达MP、NQ即可.表达分下列四种情况:

①如图1,,,令PM=QN,

解得:(舍去),;

②如图2,,,令PM=QN,

解得:(舍去),;

③如图3,,,令PM=QN,

解得:,(舍去);

④如图4,,,令PM=QN,

解得:,(舍去);

综上,m的值为、、、.

三、二次函数与几何综合

解:(1)令x=0,则y=4, ∴点C的坐标为(0,4),

∵BC∥x轴,∴点B,C关于对称轴对称,

又∵抛物线y=ax2-5ax+4的对称轴是直线,即直线

∴点B的坐标为(5,4),∴AC=BC=5,

在Rt△ACO中,OA=,∴点A的坐标为A(,0),

∵抛物线y=ax2-5ax+4经过点A,∴9a+15a+4=0,解得, ∴抛物线的解析式是

(2)存在,M(,)

理由:∵B,C关于对称轴对称,∴MB=MC,∴;

∴当点M在直线AC上时,值,

设直线AC的解析式为,则,解得,∴

令,则,∴M(,)

2、解:(1)∵抛物线过点B(,0),

∴a+2a-b=0,∴b=3a,∴

令y=0,则x=或x=3,∴A(3,0),∴OA=3,

令x=0,则y=-3a,∴C(0,a),∴OC=3a

∵D为抛物线的顶点,∴D(1,4a)

过点D作DM⊥y轴于点M,则∠AOC=∠CMD=90°,

又∵∠ACD+∠MCD=∠AOC+∠1,∠ACD=∠AOC=90°

∴∠MCD=∠1 ,∴△AOC∽△CMD,∴,

∵D(1,4a),∴DM=1,OM=4a,∴CM=a

∴,∴,∵a>0,∴a=1

∴抛物线的解析式为:

(2)当AB为平行四边形的边时,则BA∥EF,并且EF= BA =4

由于对称轴为直线x=1,∴点E的横坐标为1,∴点F的横坐标为5或者3

将x=5代入得y=12,∴F(5,12).将x=-3代入得y=12,∴F(-3,12).

当AB为平行四边形的对角线时,点F即为点D, ∴F(1,4).

综上所述,点F的坐标为(5,12),(3,12)或(1,4).

3、解:(1)对于,当y=0,x=2;当x=8时,y=.

∴A点坐标为(2,0),B点坐标为

由抛物线经过A、B两点,得

解得

(2)设直线与y轴交于点M

当x=0时,y=. ∴OM=.

∵点A的坐标为(2,0),∴OA=2,∴AM=

∴OM:OA:AM=3:4:5.

由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOM ∽△PED.

∴DE:PE:PD=3:4:5

∵点P是直线AB上方的抛物线上一动点,

∴PD=

由题意知:

4、解:(1) ∵抛物线y1=ax22axb经过A(1,0),C(0,)两点,

∴,∴,∴抛物线的解析式为y1= x2x

(2)解法一:过点M作MN⊥AB交AB于点N,连接AM

由y1= x2x可知顶点M(1,2) ,A(1,0),B(3,0),N(1,0)

∴AB=4,MN=BN=AN=2,AM=MB=.

∴△AMN和△BMN为等腰直角三角形.

∵∠MPA+∠QPB=∠MPA +∠PMA=135°

∴∠QPB=∠PMA

又∵∠QBP=∠PAM=45°∴△QPB∽△PMA

∴ 将AM=,AP=x+1,BP=3-x,BQ=代入,

可得,即.

∵点P为线段OB上一动点 (不与点B重合)∴0x<3

则y2与x的函数关系式为y2=x2x(0x<3)

解法二:

过点M作MN⊥AB交AB于点N.

由y1= x2x易得M(1,2),N(1,0),A(1,0),B(3,0),

∴AB=4,MN=BN=2,MB=2,MBN=45.

根据勾股定理有BM 2BN 2=PM 2PN 2. ∴…①,

又MPQ=45=MBP,∴△MPQ∽△MBP,∴=y22

由、得y2=x2x.

∵0x<3,∴y2与x的函数关系式为y2=x2x(0x<3)

5、解:(1)由题意,得,解得

∴抛物线的解析式为.

(2)①令,解得 ∴B(3, 0)

则直线BC的解析式为 当点P在x轴上方时,如图1,

过点A作直线BC的平行线交抛物线于点P,∴设直线AP的解析式为,

∵直线AP过点A(1,0),∴直线AP的解析式为,交y轴于点.

解方程组,得 ∴点

当点P在x轴下方时,如图1,

根据点,可知需把直线BC向下平移2个单位,此时交抛物线于点,

得直线的解析式为,

解方程组,得

综上所述,点P的坐标为:

②过点B作AB的垂线,交CP于点F.如图2,∵

∴OB=OC,∴∠OCB=∠OBC=45° ∴∠CBF=∠ABC=45°

又∵∠PCB=∠BCA,BC=BC ∴△ACB≌△FCB

∴BF=BA=2,则点F(3,-2)又∵CP过点F,点C ∴直线CP的解析式为.

四、中考数学压轴题专项训练答案

1.(1);

(2);

(3)t=1或2.

2.(1),;

(2);

(3)存在,点P的坐标为.

3.(1),;

(2);

(3)15.

4.(1);

(2);

(3).

5.(1);

(2)①,当时,;

②.

6.(1);

(2); (3).

中考必做的36道压轴题物理(初三物理知识重点和笔记)