新教科版五年级科学下册教案(新教科版五年级科学)
新教科版五年级科学下册教案(新教科版五年级科学)

教科版五年级科学下册《沉浮与什么因素有关》教案公开

《沉浮与什么因素有关》教案

【教学目标】

科学概念:

1、物体的沉浮与自身的质量和体积都有关。

2、不同材料构成的物体,如果体积相同,重的物体容易沉;如果质量相同,体积小的物体容易沉。

3、潜水艇应用了物体在水中的沉浮原理。

过程与方法:

1、用控制变量的科学方法,探究物体沉浮的原因。

2、学习用分析的方法研究影响沉浮的因素。

情感、态度、价值观:

1、在实验中理解控制变量的科学方法和思想的意义。

2、感受科学原理应用于实际的巨大作用。

【教学重点】

用控制变量的科学方法,探究物体沉浮的原因。

【教学难点】

学习用分析的方法研究影响沉浮的因素。

【教学准备】

分组实验材料:物体7种,小石块、泡沫块、回形针、蜡烛、带盖的空瓶、萝卜、橡皮、水槽,物体沉浮实验盒中的四种沉浮快(体积相同,重量不同),相同质量不同体积的立方体泡沫块、土豆块、铁块,学生实验报告单。

小组实验三:水槽(与实验二共用),小瓶子,沙子若干,实验报告单。

【教学过程】

一、分析物体在水中的沉浮规律:

1、导入:我们已经知道,同一种材料构成的物体,在水中的沉浮与它们的轻重、体积大小没有关系。那么,不同材料构成的物体,在水中的沉浮与它们的轻重、体积大小有关系吗?本节课我们继续探究。

2、学生按体积大小顺序排列七种物体。

猜想:它们在水中是沉还是浮。

物体的沉浮和它的体积大小有关系吗?

3、按轻重顺序排列七种物体。

猜想:出它们在水中是沉还是浮。

物体的沉浮和它的轻重有关系吗?

4、学生实验验证。

5、当我们对这些物体进行比较时,为什么看不出它们的轻重、体积大小与沉浮之间的关系?

二、控制其他因素进行研究:

1、引导:当遇到这种情况时,科学家往往采用控制其他因素不变的方法,来研究某一个因素是否对物体产生作用。今天老师为大家准备了两套材料,让我们向科学家那样进行研究。

2、出示材料:一套相同体积不同质量的沉浮块(木块、塑料块、铝块、铁块),一套相同质量不同体积的立方体(泡沫块、土豆块、铁块)

推测:它们在水中的沉浮,并填写在实验报告单上。

3、分小组实验,观察并记录分析。

4、组织交流:从这两组材料的实验中,我们得出什么结论?

不同材料构成的物体,如果体积相同,重的物体容易沉;如果质量相同,体积小的物体容易沉。

物体的沉浮与自身的质量和体积都有关。

5、讨论:为什么用上节课的物体进行比较看不出物体大小、轻重对沉浮的影响,而用这两组材料进行研究时能够看出物体的轻重、体积大小与沉浮的关系?

三、用小瓶子继续研究:

老师手上有一个瓶子,你能用什么办法改变它在水中的沉浮?现在我们就来研究。

2、演示实验(器材:水槽,小瓶子,沙子)。

3、组织讨论:这个活动改变了什么因素,什么因素是没有改变的?。(改变了物体的轻重,物体的体积没有改变。)

生活中的那些现象是运用了这个工作原理?。指名学生思考答。

4、ppt课件:潜艇既能在水面航行,又能在水下航行。潜艇有一个很大的压载舱。打开进水管道,往压载舱里装满海水,潜艇会下潜,打开进气管道,用压缩空气把压载舱里的海水挤出舱外,潜艇就开始上浮。

5.联系生活实际,在生活中那些现象和潜水艇一样运用了物体沉浮原理?引导学生认识鱼也是应用了这个沉浮原理,师讲解鱼是怎样上浮下潜的。

板书设计:

2、沉浮与什么因素有关

体积 轻重 有关

体积相同 轻重不同 重易沉

体积不同 轻重相同 小易沉 物体的浮、沉与液体密度、和物体密度有关:根据阿基米德定律 F浮=ρ液gV排 G物=ρ物gV物,浸在液体中的物体 1、ρ液>ρ物, F浮> G物,物体上浮;2、ρ液=ρ物, F浮= G物,物体悬浮;3、ρ液<ρ物, F浮< G物,物体下沉。

五年级下册科学《热是怎样传递的》教案教科

(教科版)五年级科学下册教案

第二单元

一、教材简析:

本课教材安排了两个主要的探究活动。

第一个活动是:热在金属条中的传递。先通过学生用手触摸来感受到金属条中热量的传递,进而判断热传递的过程和方向。在这个基础上设计直观的实验,观察金属条中热传递的过程和方向,目的是要用眼清楚地看到热传递的方向及过程。

第二个活动是:热在金属片中的传递。这一教学环节希望学生能更深入地观察热传导现象。根据日常生活中的经验,学生们往往会认为热传导是一个线行的过程,经过上面的实验观察活动,似乎更强化了他们的这种认识。热传导真是这样的吗?教科书设计了观察金属片中的热传递的活动,这项活动,不仅拓宽了学生探究思路,也会使学生对热传导产生新的认识,更深刻地认识到热是从温度高的地方传向温度较低的地方。

从教材安排的来看,学生在经历第一个探究活动后就能准确地得出热是从温度高的地方传递到温度低的地方,第二个活动的目的是使学生更深入的观察,使其对热传递有更全面的认识和理解。金属片上热传递的过程和方向,是对第一个实验的拓展,从点到面,更加加深了学生对热传导的理解。

二、教学背景:

《热是怎样传递的》这一课承接了第五课《金属热胀冷缩吗》的内容,在第五课中经历酒精灯给金属物体加热时,学生已经初步感觉到了热量会传递的现象。同时,第七课《传热比赛》中又应用到了热传递的结论,所以从这一点上来说,《热是怎样传递的》这一课,学生将在教师指导下,通过实验观察热在金属条中的传递过程和方向。然后综合分析观察结果,分析热传导过程中的共同特点,形成粗浅的关于热是怎样传到的认识,在本单元有着承上启下的作用。

三、教学设计:

教学目标

(一)科学概念:

1.热总会从温度较高的一端(物体)传递到温度较低的一端(物体);

2.通过直接接触,将热从一个物体传递给另一物体,或者从物体的一部分传递到另一部分的传热方式叫热传导。

科学词汇:热传导

(二)过程与方法:

1.设计实验观察热传导的过程和方向;

科学方法:实验、观察

(三)情感态度价值观:

1.保持积极的观察探究热传递的兴趣;

2.体验通过积极思考和探究所获得的成功喜悦。核心价值观:乐于交流,认真倾听,尊重他人,获得有价值的信息

新教科版五年级科学

一 物体在水中是沉还是浮 1、物体在水中(有沉有浮),判断物体沉浮有一定的标准。只要物体不沉入水底,就说明这个物体是浮的。

2、同种材料构成的物体,在水中的沉浮与它们的轻重、体积大小没有关系,沉浮状况不改变。如:一块完整的橡皮放在水中是沉的,切四分之一放入水中还是沉的。一个苹果是浮的,切二分之一还是浮的。一个回形针是沉的,两个串在一起还是沉的。一块木块是浮的,分成一半还是浮的。

二 沉浮与什么因素有关

1、对于不同种材料构成的物体,我们在判断在水中的沉浮时,往往采取改变一个因素、控制其它因到素不变的的方法来研究。对于不同种材料制成的物体,大小相同判断轻重,轻的容易浮重的容易沉。轻重相同看大小,大的容易浮小的容易沉。(体积大、重量小的物体容易浮;

体积小、重量大的物体容易沉。)

2、小瓶子和潜水艇都是在体积不变下通过加减水改变轻重来实现沉浮的。

3、潜水艇既能在水面上航行,又能在水下航行。潜艇有一个很大的压载舱。打开进水管道,往压载舱里装满海水,潜艇会下潜,打开进气管道,用压缩空气把压载舱里的海水挤出舱外,潜艇就开始上浮。

4、潜水艇是通过改变(自身的重量)来控制沉浮的,潜水艇应用了物体在水中的(沉浮原理)。

三 橡皮泥在水中的沉浮

1、我们把物体在水中排开水的体积叫做排开的水量。

2、改变物体排开的水量,物体在水中的沉浮可能发生(改变),

3、一块橡皮泥放入水中是沉的,你有办法让它浮起来吗?

(做成空心)、(做成船形)、(做成碗形)、(做成花瓶形)等。

4、相同重量的橡皮泥,做成不同形状后,(排开的水量)越大,就越容易(浮)。

5、为什么铁块在水中是沉的,而钢铁造的大轮船却能浮在水面上?

答:因为把钢铁做成轮船的形状,会大大增加轮船排开的水的体积。

6、总结:各种形状的实心橡皮泥在水中是沉的,要让橡皮泥浮起来,可以在大小不变下改变重量,如挖空成船或碗形。重量不变的下改变大小,如做成空心的各种形状。物体在水中的沉浮和它所排开的水量有关。排开的水量指物体在水中排开的水的体积,也指物体与水相接触的体积。全部沉入水里的物体排开的水量就是物体自己的体积,浮在水面上的物体排开的水量指物体在水下面部分的体积。铁制的大轮船能浮在水面上,因为它排开的水量特别的大。

四 造一艘小船

1、相同重量的橡皮泥,(浸人水中的体积越大)越容易浮,它的(装载量)也随之增大。

2、要用橡皮泥造一只装载量比较大的船,一是重量不变的前提下造得尽量大,使船排开的水量大,二是做些船舱,放物品时使船身保持平稳。

五 浮力

1、把泡沫塑料块等往水中压,手能感受到水对泡沫塑料块有一个向(上)的力,这个力我们称它为水的(浮力)。可以用(测力计)测出浮力的大小。

2、放在水面上的物体,都会受到水的(浮力),浮在水面上的物体,浮力等于重力。下沉的物体在水中也受到(浮力)的作用,沉在水底的物体,浮力小于重力。浮力和重力的方向(相反),浮力向(上),重力向(下)。

3、当物体在水中受到的(浮力大于重力)时就(上浮);

当物体在水中受到的(浮力小于重力)时就(下沉);

浮在水面的物体,浮力(等于)重力。

4、测量泡沫在水中受到的浮力,用测力计拉住绳子通过底部滑轮让泡沫沉入水底,浮力=拉力

5、泡沫全部浸入水中时,与水接触的体积最大,排开的水量最大,受的浮力最大,所以上浮物体受到浮力大小与物体排开的水量有关,体积大的泡沫受到的浮力大于体积小的泡沫。

6、物体在水中受到的浮力大小与(排开的水量)有关,(排开的水量越大)或浸入水中的体积越大,受到的浮力就(越大)。

7、把泡沫塑料块压入水里,一松手,为什么它会上浮?

答:因为泡沫塑料块完全浸入水中受到的浮力远远大于它本身的重量,所以会上浮。

六 下沉的物体会受到水的浮力吗

1、研究下沉的物体是否受到浮力先用测力计测出空气中的重力,再放入水中测得重力,浮力=空气中的重力-水中的重力。当将物体全部浸入水中时,排开的水量最大,受到的浮力最大,所以下沉物体受到的浮力大小也与物体排开的水量有关,体积大的石块受到的浮力大于体积小的。

2、下沉的物体也会受到水的浮力,浮力的大小与排开的水量(浸入水中的体积)有关。

3、你能用重力和浮力的关系来解释物体在水中的沉浮的原因吗?

答:当物体在水中受到的浮力小于它受到的重力,会下沉;

当物体在水中受到的浮力大于它受到的重力,会上浮。

七 马铃薯在液体中的沉浮

1、当液体中溶解了足够量的其它物质时(如盐、糖、味精等),有可能会使马铃薯浮起来。死海淹不死人就是因为海水里溶解了大量的盐。

2、马铃薯比同体积的清水重,而比同体积的浓盐水轻,所以马铃薯在清水中(下沉),在盐水中(上浮),马铃薯在(浓盐水、浓糖水)等液体里都能浮起来。

八 探索马铃薯沉浮的原因

1、钩码在不同的液体中受到的浮力是不同的,说明不同的液体对于相同的物体所产生的浮力大小是不同的。我们在判断物体在某种液体里的沉浮时,往往利用相同的体积比较轻重。如铜能浮在水银上,是因为相同体积的铜和水银,水银重于铜,马铃薯在浓盐水中是浮而在清水中沉,因为相同体积的马铃薯轻于浓盐水而重于清水。

2、测量液体轻重的仪器叫作(比重计)。

2、物体的沉浮与液体有什么关系?

答:物体比同体积的液体重,下沉;

物体比同体积的液体轻,上浮。

3、物体在水中的沉浮与什么因素有关?

答:物体在水中的沉浮与同体积的水的重量有关。物体比同体积的水重,下沉;

比同体积的水轻,上浮。

4、物体在液体中的沉浮与什么因素有关?

答:物体在液体中的沉浮与同体积的液体的重量有关。物体比同体积的液体重,下沉;

物体比同体积的液体轻,上浮。

一 热起来了

1、有多种方法可以(产生热)。当我们感到冷时,我们可以通过运动、多穿衣服、吃热的食物、靠近热源等方法来保暖。

2、加穿衣服会使人体感觉到热,但(并不是衣服)给人体(增加了热量)。衣服本身不能产生热量,它只能减缓身全向空气散发热量的速度,起来保暖的作用。

二 给冷水加热

1、装有热水的塑料袋能浮在冷水盆中。因为相同重量的水在加热时体积会变大,加满水的试管上面包一块气球皮,加热时气球皮鼓起来了这一现象来说明。

2、相同体积的冷水和热水比较,冷水重,热水轻;

相同重量的冷水和热水比较,冷水体积小,热水体积大。

3、冷水在加热过程中,体积变大,重量不变。

三 液体的热胀冷缩

1、要明显地观察到水由冷变热时体积的变化,利用一个烧瓶装满水,上面橡皮塞上插一空心玻璃管,水变热时水位上升水变冷时水位下降,这种水体积的变化叫做热胀冷缩。但水在4摄氏度时正好相反,是热缩冷胀,金属锑和铋具有热缩冷胀的性质。其它的液体也具有热胀冷缩的性质,所以装液体的瓶子都不会装满。

2、热胀冷缩:水受热时体积膨胀,受冷时体积缩小,我们把水的体积的这种变化叫做热胀冷缩。

3、(许多液体)受热以后体积会变大,受冷以后体积会缩小。

4、物体由冷变热或由热变冷的过程中会发生(体积)的变化,这可以通过我们的(感官)感觉到或通过(一定的装置和实验)被观察到。

四 空气的热胀冷缩

1、我们用一瓶口装有气球的瓶子来研究空气的变化,将瓶子放水热水里时,气球鼓起来了,比水的热胀冷缩的变化要明显,说明气体也有热胀冷缩的性质。解释热胀现象:常见的物体都是由微粒组成的,而微粒总是在那里不断地运动着。物体的热胀冷缩和微粒运动有关:当物体吸热升温以后,微粒加快了运动,微粒之间的距离增大,物体就膨胀了;

当物体受冷后,微粒的运动减慢,微粒之间的距离缩小,物体就收缩了。

2、(气体)受热以后体积会胀大,受冷以后体积会缩小。

3、(许多固体和液体)都有(热胀冷缩)的性质,(气体)也有热胀冷缩的性质。

4、与水相比,气体的热胀冷缩变化的更快、更明显。

5、物体的热胀冷缩是怎样引起的?

答:常见的物体都是由微粒组成的,而微粒总是在那里不断地运动着。物体的热胀冷缩和微粒运动有关:当物体吸热升温以后,微粒加快了运动,微粒之间的距离增大,物体就膨胀了;

当物体受冷后,微粒的运动减慢,微粒之间的距离缩小,物体就收缩了。

五 金属热胀冷缩吗

1、铜球在加热后不能穿过铁环冷却后能穿过铁环,说明铜也具有热胀冷缩的性质。钢条加热后会变长加粗、铁轨铺设时分段并留有缝隙、铁桥架在滚轴上,都说明大多数金属都有这样的性质。锑、镓、铋等金属正好与大多数相反,是热缩冷胀。

2、钢铁造的桥在温度变化时会热胀冷缩。因此,铁桥通常都架在滚轴上。

3、大多数固体和液体会热胀冷缩,但是有些固体和液体在一定条件下是(热缩冷胀)的,例如(锑)和(铋)这两种金属就是热缩冷胀的。(0—4之间)的水是冷胀热缩。

4、为什么水泥路面、铁轨、建筑物的各部分之间等都留有一小段缝隙?

答:因为水泥路面、铁轨、建筑材料等都具有热胀冷缩的性质,留有缝隙是为它们在温度变化时有自由伸缩的空间。

5、为什么架设电线时候不能太紧?

答:电线在夏天会热胀,冬天会冷缩。如果电线架设的太紧,冬天受冷收缩就会发生断裂。

6、为什么在寒冷的冬天自来水管(水表、饮料瓶里的饮料)会冻裂?

答:因为水在4摄氏度以下会热缩冷胀。冬天气温低,自来水管(水表)里的水(饮料瓶里的饮料)会结冰体积膨胀,所以就冻裂了。

六 热是怎样传递的

1、观察热的传递,用酒精灯一端加热粘有火柴的铁丝及涂有蜡的圆盘来研究,发现热在传递时由热源为起点,由热的一端向冷的一端传递或由热的物体向冷的物体传递。离热源越远,热传递的时间越长。

2、热是一种(能量)的形式,热能够从物体(温度较高)的一端向(温度较低)的一端传递,从温度高的物体向温度低的物体传递,直到两者温度相同。

3、热总是从较热的一端传向较冷的一端或者从温度高的物体传到温度低的物体,因此,热量绝不会消失。

4、热传导:通过直接接触,将热从一个物体传递给另一个物体,从物体的一部分传递到另一部分的传热方式叫做热传导。

5、热传递主要通过(热传导)、(对流)和(热辐射)三种方式来实现。热传递是一个从热源中心向四周各个方向逐渐扩散的过程。

七 传热比赛

1、一般来说,金属的传热能力强于非金属,通过金属和非金属物质的组合,可以有效地控制热量的传递。铜铝钢传热性能比较:铜>铝>钢

2、不同的物体传导热量的快慢是不一样的。

3、金属等传导热量快,我们把它们叫做热的良导体;

热的良导体吸热快、散热快。

木头、塑料等传导热量慢,我们把它们叫做热的不良导体;

热的不良导体吸热慢,散热慢。

4、热的不良导体,导热(慢),散热(慢),可以(减慢)物体热量的散失。热的良导体,导热(快),散热(快)。铁是热的(良导体),空气是一种热的(不良导体)。

八 设计一个保温杯

1、制作保温杯方法:1、隔绝空气与水相接触,设计一个用热的不良导体制用的盖子。2、用热的不良导体制成杯身或在杯子外制成一个杯套。棉衣棉被作为热的不良导体,所起的作用是阻止或减缓热量的传递速度。冷柜断电盖棉被是减缓空气中的热量向冷柜传递。

一 时间在流逝

1、我们可以用有规律或有节奏的活动来估计时间,如数心跳、有节奏地敲桌子等。但凭我们的估计不能准备地知道时间。在一分钟的时间里大约可写( )几个字、看( )行字,跑( )米路等。时间以不变的速度在流逝,平时觉得时间有快慢是我们的感觉在起作用。

2、钟表以时、分、秒计量时间,钟面上的秒针每转动一格,表示时间流逝了一秒钟,秒针转动一圈则表示时间流逝了一分钟。

3、在不同的情况下,我们对(相同时间)(时长)的主观感受会不一样,但时间是以(不变的速度)在延伸的。

4、借助自然界有规律运动的事物或现象,我们可以(估计时间)。

5、时间可以通过对(太阳运动周期的观察)和(投射形成的影子)来测量,一些(有规律运动的装置)也曾被用来计量时间。

二 太阳钟

1、在远古时代,人类用天上的(太阳)来计时。日出而作,日落而息,(昼夜交替)自然而然成了人类最早使用的(时间)单位——(天)。

2、古埃及人把天空分为36个星座,通过观察星座的运动,把夜晚确定为12个小时,同样,白昼也被确定为12个小时。但夏夜实际上大约有8个小时。

3、古代的人还常常用光影来计时,如日晷。(日晷)就是利用太阳在天空中位置的变化使地面上物体的影子长度和位置的变化而计时的。日晷又叫“日规”,是我国古代利用日影测量时间的一种计时仪器。日晷通常由铜制的指针(晷针)和石制的圆盘(晷面)组成。日晷依晷面所放位置的不同,可分为地平日晷和赤道日晷两种。

4、阳光下物体(影子的方向、长短)会慢慢地发生变化。(“日晷”)与(“圭表”)是根据(日影长度)制成的(计时器)。

三 用水测量时间

1、在一定的装置里,水能保持以(稳定的速度)往下流,人类根据这一特点制作(水钟)用来计时。

2、水钟在我国古代又叫“刻漏”,是根据滴水的等时性原理来计时的工具。滴水计时有两种方法,一种是利用特殊容器记录水漏完的时间(泄水型);

另一种是底部不开口的容器,记录它用多少时间把水接满(受水型)。受水型水钟的工作原理:水滴以固定的速度滴入圆筒,使得浮标会随水量的增加而逐渐上升,从而显示流逝的时间。泄水型水钟工作原理:容器内的水面随水的流出而下降,从而测出过去了多少时间。

3、在滴漏实验时,如果水是以水流的状态往下流时,水的流速是(不固定)的,随着水量的减少速度变(慢)。容器中水越少,则水下流的速度就(越慢)。

四 我的水钟

1、将两个塑料瓶去头去底进行组合,就可以制成一个简易水钟。设计制作的一般步骤为:一、先选择制作水钟的类型(受水型还是泄水型)二、确定总水量,三、使水的流速保持一样。受水型(使水流成水滴或使总水量保持不变。)泄水型(使水流成水滴)四、测出一分钟的水量。五、推测出其余十分钟的水量。

五 机械摆钟

1、摆钟的摆一分钟摆动60次,第分钟次数相同。一条细绳,上端固定,下端挂一个小重物,就组成一个简易的摆。摆在摆的过程中方向不变、速度不变,幅度越来越小。

2、虽然像日晷、水钟以及燃油钟、沙漏等一些简易的时钟已经可以让我们知道大概的时间,但是人们总是希望有更精确的时钟。随着科学和技术的发展,人们制作的(计时工具)越来越精确。摆钟的出现大大提高了时钟的精确度。

3、单摆由摆绳、摆锤组成的,同一个单摆每摆动一次所需的时间是(相同)的;

单摆具有等时性。根据摆的等时性原理制成了摆钟(座钟、挂钟)。,使时间的计量误差更小。

4、(机械摆钟)是(摆锤)与(齿轮操纵器)联合工作的。

六 摆的研究

1、不同的摆自由摆动时的快慢是(不一样)的。我们通过重物的重量、拉开的(幅度)、摆绳的(长度)来研究。摆的快慢与摆锤重量和摆幅大小无关。与摆绳的长短有关:摆绳越长,摆摆动越慢;

摆绳越短,摆摆动越快。

七 做一个摆钟

1、在不改变摆绳长度的前提下,摆锤的长度发生变化,发现摆锤越长,速度越慢,得出结论,摆的速度与摆的长度(摆绳加摆锤的长度)有关。摆越长,速度越慢。在摆锤最下面悬挂一个重物,发现挂了重物的摆比不挂重物的摆速度要慢。都挂了重物的摆在比较时发现:摆的速度与重物的位置有关,重物越往下,摆的速度越慢,越往上,摆的速度变快。我们要调整一个摆的摆动速度只需要调整重物的位置变可以了。由慢变快,重物上移,由快变慢,重物下移。

八 制作一个一分钟计时器

1、计时器的组成:(齿轮控制器)、(支轴)、(长针短针)、(摆锤)、(齿轮)、(垂体)。齿轮控制器由摆来控制、齿轮由垂体来控制。设计一个分钟的计时器,可以制成(水钟)、(摆钟)等。

2、设计时钟的要诀在于让指针以一定的快慢移动,几个世纪以来的时钟都是用摆锤控制与齿轮相连的指针运转的。

3、垂体时钟是利用下垂的重力来转动齿轮,当垂体所受的重力转动齿轮时,摆锤与齿轮操纵器会联合工作,控制转动的规律。

4、垂体时钟工作原理(摆锤与齿轮操纵器工作方法)

摆钟齿轮操纵器两端各有倒钩,可以卡在齿轮中间,以便控制齿轮的转动。而齿轮操纵器又与摆锤相连。当摆锤来回摆动时,总会松开其中一端的操纵器,让它可以跳过一个齿。这样,摆锤每摆动一次,操纵器就可以控制一个齿,如此一个接一个有规律的使齿轮转动,同时带动指针转动。

一 昼夜交替现象

1、在地球上看到昼和夜不停的交替出现,我们可以提出这样的几种假说:、(地球不动,太阳围着地球转)。、(太阳不动,地球围着太阳转)。、(太阳不动,地球自转)。、(地球围着太阳转,同时自转)。

2、(昼夜交替现象)有多种可能的解释。

3、(昼夜交替现象)与(地球和太阳的相对圆周运动)有关。

二 人类认识地球及其运动的历史

1、托勒密是古希腊天文学家,提出了“地心说”,主要观点:、地球是个球体;

、地球处于宇宙中心而且静止不动;

、所有的日月星辰都绕着地球转动。

2、哥白尼是波兰天文学家,提出了“日心说”,主要观点:、地球是球形的;

、地球24小时自转一周;

、太阳是宇宙的中心,地球等星体绕太阳转动。

3、(“日心说”)和(“地心说”)中有关地球及其运动的观点都可以解释(昼夜交替现象)。

三 证明地球在自转

1、将摆和它的支架放在一个圆形的底盘上,摆摆动时转动底盘,摆摆动的方向并没有随着底盘的转动而改变,而是基本不变。日心说发表300年后(1851年),法国物理学家傅科利用傅科摆证明了地球在自转。他发现:随着时间的推移,地面上刻度盘的方向与摆的方向发生的偏移,由于摆的方向能保持不变,所以只能说明地球在自己转动。傅科摆作为地球自转的证据,已为世界所公认。

2、摆具有摆动方向(保持不变)的特点。(傅科摆)是历史上证明地球自转的关键性证据。

四 谁先迎来黎明

1、(天体的东升西落)是因(地球自转)而发生的现象。

2、地球自转的方向与天体的东升西落(相反),即(逆时针)或(自西向东)。

3、(地球的自转方向)决定了不同地区迎来黎明的时间不同,(东边早)西边晚。

4、地球及其运动的特点:

5、不同地区所处的(经度差)决定了地区之间的(时差)。

6、从世界时区图中我们可以看出:人们以地球经线为标准,将地球分为24个时区。将通过英国伦敦格林尼治天文台的经线,定为0度经线。从0度经线向东180度属于东经,向西180度属于西经。经线每隔15度为一个时区,相邻两个时区的时间就差一小时。由于地球自转的方向是自西向东(逆时针),也就意味着越是东边的时区,就越先迎来黎明。在地图上越是东面(右边)的城市,越先见到太阳。知道东面的城市算西面的城市的时间,要减去时间差,知道西面的城市算东面城市的时间,要加上时间差。北京处于东八区,纽约处于西五区,相差13个小时,北京是白天时,纽约是黑夜。

五北极星“不动”的秘密

1、地球是围绕着地轴进行转动的,因为夜晚看天空北极星是不动的,它在地轴的北部延长线上。地轴是倾斜的,因为我们看到的北极星是在偏向于北部的天空中而不是在头顶正中。在一年四季里地轴倾斜的方向是不变的,因为一年时间里在天空我们看到的北极星都是不动的,它的位置没有发生变化,地轴一直指向于北极星。

2、天空中星星围绕(北极星)(顺时针)旋转,北极星相对“不动”,是(地球自转)产生的现象。

3、从(北极星)在天空中的位置可推测出(地轴是倾斜的)。

4、北极星为什么“不动”?5

答:地球是围绕着一个假想的轴在转动,称为地轴。北极星就处在地轴的延长线上。地球转动时,地轴始终倾斜着指向北极星,这就是北极星“不动”的秘密。

六地球在公转吗

1、地球公转的证据是:、人们在不同夜晚的同一时间观察天空中的星座时发现,天空中星座的位置会随着时间的推移由东向西移动,如北斗七星。、人们在观察远近不同的星星时产生的视觉上的相对位置差异恒星的周年视差,也能证明地球在公转。我们在地球上观看两颗远近不同的星星时,不同的季节两颗星之间的相对距离和位置发生了变化。(恒星周年视差)是历史上证明地球公转的关键性证据。、现在,人们通过太空望远镜、人造卫星等,能直接观察到地球确实在围绕太阳公转。

2、地球在自转的同时,还围绕(太阳)公转,公转就是地球围绕着(太阳)转动;

公转的方向是(自西向东);

公转一周是(365天/一年)。

3、在围绕某一物体(公转)时,在(公转轨道的不同位置)会观察到远近不同的物体存在(视觉位置差异)。

七为什么一年有四季

1、在春夏秋冬不同季节的正午,古人发现在同一地点的杆子在地面上的影子长度是不一样的。其中春秋季影子适中,夏季最短,冬季最长,这与太阳在天空中的高度有关。

2、阳光的直射和斜射造成了地球上不同地区气温的不同,春秋季阳光直射点在赤道地区,赤道地区最热,南北两半球阳光是斜射的,所以春秋季气温适宜。北半球夏天时阳光的直射点在北半球,南半球在斜射的,阳光要弱,所以北半球地夏天南半球是冬天。北半球是冬季时阳光的直射点在南半球,北半球阳光是斜射的,阳光要弱,所以南半球是夏天,南北两半球的季节正好相反。

3、四季的成因:地球在公转的过程中,由于地轴的倾斜,导致阳关有规律性的直射或斜射某一地区,因此气温也有规律的变化,形成四季。

4、(四季的形成)与(地球的公转)、(地轴的倾斜)有关。

八极昼和极夜的解释

1、在地球的南北两极,半年时间是白天半年时间是晚上,而且南北两极正好相反。主要的原因是地球是倾斜的,太阳能照亮地球的一半,地球在公转过程中倾斜于太阳的一端在地球自转时一直能被太阳光照亮。

2、地球的运动:自转:自西向东、逆时针,绕着地轴且倾向于北方,大约24小时为一周期,用傅科摆来证明,产生了昼夜交替、不同地区迎来黎明的时间不同、北极星不动等现象。公传:自西向东逆时针绕着太阳转,一年为一周期,用恒星的周年视差、不同季节同一时间天空中星座的位置的移动来证明。产生了四季、南北极的极昼极夜现象。

3、在认识地球的运动过程中还有一些有趣的现象如日照冬短夏长、地球公转的轨道是椭圆形等。

4、(地轴倾斜角度的大小)可以影响(极昼极夜)发生的地区范围。地轴倾斜的(角度大小)和极昼极夜发生的(范围大小)有关

5、(极昼和极夜现象)与(地球公转)、(自转)和(地轴倾斜)有关。

6、极昼和极夜是怎么形成的?

答:在地球绕太阳公转的过程中,由于地轴倾斜大约23度,导致阳光有规律的直射或斜射南半球或北半球,形成了南极和北极的极昼或极夜现象。

教科版五年级科学下册教案

教学目的:

1、知道摆具有保持摆动方向不变的特点。

2、通过有关“傅科摆”的资料,初步理解“傅科摆”证明了地球在自转。

3、初步认识昼夜交替现象与地球自转有关。

4、认识到地球自转虽然不能直接观察到,但是能通过实验证实。

教学重点:认识摆具有保持摆动方向不变的特点。

教学难点:理解傅科摆可以证明地球自转。

教学准备:单摆一个,支架一个,有关“傅科摆”的视频资料等。

教学过程:

激情导入 明确目标

我们都生活在地球上,地球是否在运动呢?(生:自转、公转)

的确,地球在绕着太阳公转的过程中也在不停的自转,随着航天技术的不断发展,我们可以通过人造地球卫星等设备观察到地球在自西向东地自转。而在古代,人们是无法直接观察到地球自转的,那他们是怎样证明地球在自转的呢?今天,就让我们一起来学习《证明地球在自转》。

自主学习 合作交流

(一)认识摆的特点

(1)出示单摆明确起摆要求,并进行前后摆动,问:谁能描述一下现在摆锤的摆动方向?

师:这是一个摆,(板书:摆)它是由一条摆绳和一个摆锤组成的,古人就是通过摆发现地球在自转的,所以接下来我们就要对摆进行研究。谁愿意上来帮助老师将摆锤南北方向摆动起来?(请一名学生起摆)(口述起摆要求)拉紧摆绳,提起摆锤,靠近铁杆,与铁杆保持一定的距离,然后自然松手。

(2)师:现在我们观察到摆是南北来回摆的,如果老师将摆的整个装置转动90度,摆锤的摆动方向会发生变化吗?(学生猜测)师:为什么这么猜?转动180度呢?转360度呢?

师:我们还是通过实验来研究摆的方向在摆架转动后是否会发生变化。(出示底盘)这是一个可以自由旋转地圆盘,我们将摆架底座按照南北朝向放到圆盘上,方便我们南北方向起摆。接下来怎样研究摆的摆动方向在摆架转动后是否会发生变化呢?(学生设计方案)这个方案不错,但要顺利完成这个实验可不容易,我们一起来看一看实验的注意事项。(起摆后缓慢而平稳地转动底盘,幅度不能太大,尽可能减少外力对摆动方向的影响。在转动一圈的过程中仔细观察摆的摆动方向,特别留意摆架在转动90度,180度,360度这几个位置时摆的摆动方向。切记,在观察的过程中千万不要停下圆盘的转动,而是要求圆盘始终以一定的速度缓慢而平稳地转动)(出示注意事项)

教师强调注意点:

①小组内分工明确

②摆架底座南北方向摆放,摆锤南北方向起摆;

③缓慢而平稳地将底盘转动一圈。

④底盘转动一圈地过程中,随时观察90度,180度,360度摆的摆动方向。

教师演示转动180度、270度、360度,并出示实验记录单,要求实验完成后及时填写记录单。

(3)学生领取材料分组实验,完成实验记录单。

(4)交流实验结果。通过实验我们发现摆始终在南北方向来回摆动,那东西方向起摆,转动一圈后摆动方向会变化吗?(学生猜测)教师演示东西方向起摆。

(5)教师简单小结:大家通过实验发现摆在摆动过程中,摆的摆动方向基本不会随着摆架的转动而发生明显地改变,我们也可以说摆具有保持摆动方向不变的特点。(板书:保持摆动方向不变的特点。)在这里老师要告诉大家我们的这项发现和许多科学家通过实验证明的结论是一致的。

展示点拨 精讲质疑

(二)认识傅科摆可以证明地球在自转

1、引入:早在一百多年前,法国有一个叫傅科的科学家也在研究摆的性质,在研究中发现了一个惊奇的现象,什么现象,我们一起来看一下。

2、播放傅科摆的视频资料。

3、师:接下来,请同学们拿出抽屉里的资料,结合资料思考这三个问题。

傅科摆是一个特殊的摆,和我们的摆相比它特殊在什么地方?

(生:67米的摆长(20层楼高),27千克的铅球组成的摆。)

傅科在实验中发现了什么现象?

摆在一段时间内沿着顺时针方向发生了偏转

他认为是什么原因造成这种现象的?

(生:由于地球自转引起的)

师:傅科摆摆动平面沿着顺时针方向转动是由于地球自转引起的,反过来说傅科摆的这种变化就有力的证明了地球在自转。(板书:傅科摆)

4、介绍北京天文馆内的傅科摆。

师:我国北京天文馆内也有一个傅科摆,让我们通过视频来认识它。

5、教师小结:

通过视频我们发现傅科摆转动一周所需要的时间与当地的纬度有关。在北京纬度为40度的地区,傅科摆转动一周需要37个小时多,纬度越低,傅科摆转动一周需要的时间越长,如临安的纬度约是北纬30度,所以在临安当地傅科摆的摆动平面转动一周需要的时间约是51个小时多。

拓展延伸 巩固提高

(三)寻找其它证据证明地球在自转

(1)过渡:同学们,通过学习我们知道了傅科摆是可以证明地球在自转,除此之个,你知道生活中还有哪些现象也可以证明地球在自转呢?

水的旋窝,河床的冲击、昼夜交替、炮弹运动方向的偏离、探井测量法等等

(2)交流资料,拓展认识。

(3)交流昼夜交替现象产生的原因。

(生:地球本身不发光,也不透光,太阳照射到的一面是白天,照射不到的一面是黑夜,由于地自不停地西向东自转,就形成了昼夜交替。)

一、填空:

1. 古希腊天文学家托勒密关于地球和地球的运动,他提出了 ( )理论。他认为,( )处于宇宙中心,而且静止不动;所有的日月星辰都绕着( ) 旋转;

2、波兰天文学家 ( ),提出了( ),并在临终前出版了他的不朽名著《 》。他认为 ( )处于宇宙中心,而且是静止不动的。

3、法国有一位叫( )的物理学家,根据他在日常生活中的发现,用实验证实了地球在自转。

4、地球转动时,地轴始终倾斜着指向( )。A、头顶正上方 B、北极星 C、北斗星

简答题:

1、用学过的知识解释,我们在地球上看到太阳东升西落,这一现象说明了什么?

2、对于北极星的“不动”,你是怎样解释的?

总结反思 教学延伸

其实在我们生活中还有一些其他的现象也能证明地球在自转,只要你能仔细观察,让我们像傅科这样做个有心的学习者。 北半球水流漩涡都是逆时针旋转,正是因为地球自转的缘故。

免费下载这份资料?立即下载

教科版五年级科学下册《沉浮与什么因素有关》教案公开

《沉浮与什么因素有关》教案

【教学目标】

科学概念:

1、物体的沉浮与自身的质量和体积都有关。

2、不同材料构成的物体,如果体积相同,重的物体容易沉;如果质量相同,体积小的物体容易沉。

3、潜水艇应用了物体在水中的沉浮原理。

过程与方法:

1、用控制变量的科学方法,探究物体沉浮的原因。

2、学习用分析的方法研究影响沉浮的因素。

情感、态度、价值观:

1、在实验中理解控制变量的科学方法和思想的意义。

2、感受科学原理应用于实际的巨大作用。

【教学重点】

用控制变量的科学方法,探究物体沉浮的原因。

【教学难点】

学习用分析的方法研究影响沉浮的因素。

【教学准备】

分组实验材料:物体7种,小石块、泡沫块、回形针、蜡烛、带盖的空瓶、萝卜、橡皮、水槽,物体沉浮实验盒中的四种沉浮快(体积相同,重量不同),相同质量不同体积的立方体泡沫块、土豆块、铁块,学生实验报告单。

小组实验三:水槽(与实验二共用),小瓶子,沙子若干,实验报告单。

【教学过程】

一、分析物体在水中的沉浮规律:

1、导入:我们已经知道,同一种材料构成的物体,在水中的沉浮与它们的轻重、体积大小没有关系。那么,不同材料构成的物体,在水中的沉浮与它们的轻重、体积大小有关系吗?本节课我们继续探究。

2、学生按体积大小顺序排列七种物体。

猜想:它们在水中是沉还是浮。

物体的沉浮和它的体积大小有关系吗?

3、按轻重顺序排列七种物体。

猜想:出它们在水中是沉还是浮。

物体的沉浮和它的轻重有关系吗?

4、学生实验验证。

5、当我们对这些物体进行比较时,为什么看不出它们的轻重、体积大小与沉浮之间的关系?

二、控制其他因素进行研究:

1、引导:当遇到这种情况时,科学家往往采用控制其他因素不变的方法,来研究某一个因素是否对物体产生作用。今天老师为大家准备了两套材料,让我们向科学家那样进行研究。

2、出示材料:一套相同体积不同质量的沉浮块(木块、塑料块、铝块、铁块),一套相同质量不同体积的立方体(泡沫块、土豆块、铁块)

推测:它们在水中的沉浮,并填写在实验报告单上。

3、分小组实验,观察并记录分析。

4、组织交流:从这两组材料的实验中,我们得出什么结论?

不同材料构成的物体,如果体积相同,重的物体容易沉;如果质量相同,体积小的物体容易沉。

物体的沉浮与自身的质量和体积都有关。

5、讨论:为什么用上节课的物体进行比较看不出物体大小、轻重对沉浮的影响,而用这两组材料进行研究时能够看出物体的轻重、体积大小与沉浮的关系?

三、用小瓶子继续研究:

老师手上有一个瓶子,你能用什么办法改变它在水中的沉浮?现在我们就来研究。

2、演示实验(器材:水槽,小瓶子,沙子)。

3、组织讨论:这个活动改变了什么因素,什么因素是没有改变的?。(改变了物体的轻重,物体的体积没有改变。)

生活中的那些现象是运用了这个工作原理?。指名学生思考答。

4、ppt课件:潜艇既能在水面航行,又能在水下航行。潜艇有一个很大的压载舱。打开进水管道,往压载舱里装满海水,潜艇会下潜,打开进气管道,用压缩空气把压载舱里的海水挤出舱外,潜艇就开始上浮。

5.联系生活实际,在生活中那些现象和潜水艇一样运用了物体沉浮原理?引导学生认识鱼也是应用了这个沉浮原理,师讲解鱼是怎样上浮下潜的。

板书设计:

2、沉浮与什么因素有关

体积 轻重 有关

体积相同 轻重不同 重易沉

体积不同 轻重相同 小易沉 物体的浮、沉与液体密度、和物体密度有关:根据阿基米德定律 F浮=ρ液gV排 G物=ρ物gV物,浸在液体中的物体 1、ρ液>ρ物, F浮> G物,物体上浮;2、ρ液=ρ物, F浮= G物,物体悬浮;3、ρ液<ρ物, F浮< G物,物体下沉。

五年级下册科学《热是怎样传递的》教案教科

(教科版)五年级科学下册教案

第二单元

一、教材简析:

本课教材安排了两个主要的探究活动。

第一个活动是:热在金属条中的传递。先通过学生用手触摸来感受到金属条中热量的传递,进而判断热传递的过程和方向。在这个基础上设计直观的实验,观察金属条中热传递的过程和方向,目的是要用眼清楚地看到热传递的方向及过程。

第二个活动是:热在金属片中的传递。这一教学环节希望学生能更深入地观察热传导现象。根据日常生活中的经验,学生们往往会认为热传导是一个线行的过程,经过上面的实验观察活动,似乎更强化了他们的这种认识。热传导真是这样的吗?教科书设计了观察金属片中的热传递的活动,这项活动,不仅拓宽了学生探究思路,也会使学生对热传导产生新的认识,更深刻地认识到热是从温度高的地方传向温度较低的地方。

从教材安排的来看,学生在经历第一个探究活动后就能准确地得出热是从温度高的地方传递到温度低的地方,第二个活动的目的是使学生更深入的观察,使其对热传递有更全面的认识和理解。金属片上热传递的过程和方向,是对第一个实验的拓展,从点到面,更加加深了学生对热传导的理解。

二、教学背景:

《热是怎样传递的》这一课承接了第五课《金属热胀冷缩吗》的内容,在第五课中经历酒精灯给金属物体加热时,学生已经初步感觉到了热量会传递的现象。同时,第七课《传热比赛》中又应用到了热传递的结论,所以从这一点上来说,《热是怎样传递的》这一课,学生将在教师指导下,通过实验观察热在金属条中的传递过程和方向。然后综合分析观察结果,分析热传导过程中的共同特点,形成粗浅的关于热是怎样传到的认识,在本单元有着承上启下的作用。

三、教学设计:

教学目标

(一)科学概念:

1.热总会从温度较高的一端(物体)传递到温度较低的一端(物体);

2.通过直接接触,将热从一个物体传递给另一物体,或者从物体的一部分传递到另一部分的传热方式叫热传导。

科学词汇:热传导

(二)过程与方法:

1.设计实验观察热传导的过程和方向;

科学方法:实验、观察

(三)情感态度价值观:

1.保持积极的观察探究热传递的兴趣;

2.体验通过积极思考和探究所获得的成功喜悦。核心价值观:乐于交流,认真倾听,尊重他人,获得有价值的信息

新教科版五年级科学

一 物体在水中是沉还是浮 1、物体在水中(有沉有浮),判断物体沉浮有一定的标准。只要物体不沉入水底,就说明这个物体是浮的。

2、同种材料构成的物体,在水中的沉浮与它们的轻重、体积大小没有关系,沉浮状况不改变。如:一块完整的橡皮放在水中是沉的,切四分之一放入水中还是沉的。一个苹果是浮的,切二分之一还是浮的。一个回形针是沉的,两个串在一起还是沉的。一块木块是浮的,分成一半还是浮的。

二 沉浮与什么因素有关

1、对于不同种材料构成的物体,我们在判断在水中的沉浮时,往往采取改变一个因素、控制其它因到素不变的的方法来研究。对于不同种材料制成的物体,大小相同判断轻重,轻的容易浮重的容易沉。轻重相同看大小,大的容易浮小的容易沉。(体积大、重量小的物体容易浮;

体积小、重量大的物体容易沉。)

2、小瓶子和潜水艇都是在体积不变下通过加减水改变轻重来实现沉浮的。

3、潜水艇既能在水面上航行,又能在水下航行。潜艇有一个很大的压载舱。打开进水管道,往压载舱里装满海水,潜艇会下潜,打开进气管道,用压缩空气把压载舱里的海水挤出舱外,潜艇就开始上浮。

4、潜水艇是通过改变(自身的重量)来控制沉浮的,潜水艇应用了物体在水中的(沉浮原理)。

三 橡皮泥在水中的沉浮

1、我们把物体在水中排开水的体积叫做排开的水量。

2、改变物体排开的水量,物体在水中的沉浮可能发生(改变),

3、一块橡皮泥放入水中是沉的,你有办法让它浮起来吗?

(做成空心)、(做成船形)、(做成碗形)、(做成花瓶形)等。

4、相同重量的橡皮泥,做成不同形状后,(排开的水量)越大,就越容易(浮)。

5、为什么铁块在水中是沉的,而钢铁造的大轮船却能浮在水面上?

答:因为把钢铁做成轮船的形状,会大大增加轮船排开的水的体积。

6、总结:各种形状的实心橡皮泥在水中是沉的,要让橡皮泥浮起来,可以在大小不变下改变重量,如挖空成船或碗形。重量不变的下改变大小,如做成空心的各种形状。物体在水中的沉浮和它所排开的水量有关。排开的水量指物体在水中排开的水的体积,也指物体与水相接触的体积。全部沉入水里的物体排开的水量就是物体自己的体积,浮在水面上的物体排开的水量指物体在水下面部分的体积。铁制的大轮船能浮在水面上,因为它排开的水量特别的大。

四 造一艘小船

1、相同重量的橡皮泥,(浸人水中的体积越大)越容易浮,它的(装载量)也随之增大。

2、要用橡皮泥造一只装载量比较大的船,一是重量不变的前提下造得尽量大,使船排开的水量大,二是做些船舱,放物品时使船身保持平稳。

五 浮力

1、把泡沫塑料块等往水中压,手能感受到水对泡沫塑料块有一个向(上)的力,这个力我们称它为水的(浮力)。可以用(测力计)测出浮力的大小。

2、放在水面上的物体,都会受到水的(浮力),浮在水面上的物体,浮力等于重力。下沉的物体在水中也受到(浮力)的作用,沉在水底的物体,浮力小于重力。浮力和重力的方向(相反),浮力向(上),重力向(下)。

3、当物体在水中受到的(浮力大于重力)时就(上浮);

当物体在水中受到的(浮力小于重力)时就(下沉);

浮在水面的物体,浮力(等于)重力。

4、测量泡沫在水中受到的浮力,用测力计拉住绳子通过底部滑轮让泡沫沉入水底,浮力=拉力

5、泡沫全部浸入水中时,与水接触的体积最大,排开的水量最大,受的浮力最大,所以上浮物体受到浮力大小与物体排开的水量有关,体积大的泡沫受到的浮力大于体积小的泡沫。

6、物体在水中受到的浮力大小与(排开的水量)有关,(排开的水量越大)或浸入水中的体积越大,受到的浮力就(越大)。

7、把泡沫塑料块压入水里,一松手,为什么它会上浮?

答:因为泡沫塑料块完全浸入水中受到的浮力远远大于它本身的重量,所以会上浮。

六 下沉的物体会受到水的浮力吗

1、研究下沉的物体是否受到浮力先用测力计测出空气中的重力,再放入水中测得重力,浮力=空气中的重力-水中的重力。当将物体全部浸入水中时,排开的水量最大,受到的浮力最大,所以下沉物体受到的浮力大小也与物体排开的水量有关,体积大的石块受到的浮力大于体积小的。

2、下沉的物体也会受到水的浮力,浮力的大小与排开的水量(浸入水中的体积)有关。

3、你能用重力和浮力的关系来解释物体在水中的沉浮的原因吗?

答:当物体在水中受到的浮力小于它受到的重力,会下沉;

当物体在水中受到的浮力大于它受到的重力,会上浮。

七 马铃薯在液体中的沉浮

1、当液体中溶解了足够量的其它物质时(如盐、糖、味精等),有可能会使马铃薯浮起来。死海淹不死人就是因为海水里溶解了大量的盐。

2、马铃薯比同体积的清水重,而比同体积的浓盐水轻,所以马铃薯在清水中(下沉),在盐水中(上浮),马铃薯在(浓盐水、浓糖水)等液体里都能浮起来。

八 探索马铃薯沉浮的原因

1、钩码在不同的液体中受到的浮力是不同的,说明不同的液体对于相同的物体所产生的浮力大小是不同的。我们在判断物体在某种液体里的沉浮时,往往利用相同的体积比较轻重。如铜能浮在水银上,是因为相同体积的铜和水银,水银重于铜,马铃薯在浓盐水中是浮而在清水中沉,因为相同体积的马铃薯轻于浓盐水而重于清水。

2、测量液体轻重的仪器叫作(比重计)。

2、物体的沉浮与液体有什么关系?

答:物体比同体积的液体重,下沉;

物体比同体积的液体轻,上浮。

3、物体在水中的沉浮与什么因素有关?

答:物体在水中的沉浮与同体积的水的重量有关。物体比同体积的水重,下沉;

比同体积的水轻,上浮。

4、物体在液体中的沉浮与什么因素有关?

答:物体在液体中的沉浮与同体积的液体的重量有关。物体比同体积的液体重,下沉;

物体比同体积的液体轻,上浮。

一 热起来了

1、有多种方法可以(产生热)。当我们感到冷时,我们可以通过运动、多穿衣服、吃热的食物、靠近热源等方法来保暖。

2、加穿衣服会使人体感觉到热,但(并不是衣服)给人体(增加了热量)。衣服本身不能产生热量,它只能减缓身全向空气散发热量的速度,起来保暖的作用。

二 给冷水加热

1、装有热水的塑料袋能浮在冷水盆中。因为相同重量的水在加热时体积会变大,加满水的试管上面包一块气球皮,加热时气球皮鼓起来了这一现象来说明。

2、相同体积的冷水和热水比较,冷水重,热水轻;

相同重量的冷水和热水比较,冷水体积小,热水体积大。

3、冷水在加热过程中,体积变大,重量不变。

三 液体的热胀冷缩

1、要明显地观察到水由冷变热时体积的变化,利用一个烧瓶装满水,上面橡皮塞上插一空心玻璃管,水变热时水位上升水变冷时水位下降,这种水体积的变化叫做热胀冷缩。但水在4摄氏度时正好相反,是热缩冷胀,金属锑和铋具有热缩冷胀的性质。其它的液体也具有热胀冷缩的性质,所以装液体的瓶子都不会装满。

2、热胀冷缩:水受热时体积膨胀,受冷时体积缩小,我们把水的体积的这种变化叫做热胀冷缩。

3、(许多液体)受热以后体积会变大,受冷以后体积会缩小。

4、物体由冷变热或由热变冷的过程中会发生(体积)的变化,这可以通过我们的(感官)感觉到或通过(一定的装置和实验)被观察到。

四 空气的热胀冷缩

1、我们用一瓶口装有气球的瓶子来研究空气的变化,将瓶子放水热水里时,气球鼓起来了,比水的热胀冷缩的变化要明显,说明气体也有热胀冷缩的性质。解释热胀现象:常见的物体都是由微粒组成的,而微粒总是在那里不断地运动着。物体的热胀冷缩和微粒运动有关:当物体吸热升温以后,微粒加快了运动,微粒之间的距离增大,物体就膨胀了;

当物体受冷后,微粒的运动减慢,微粒之间的距离缩小,物体就收缩了。

2、(气体)受热以后体积会胀大,受冷以后体积会缩小。

3、(许多固体和液体)都有(热胀冷缩)的性质,(气体)也有热胀冷缩的性质。

4、与水相比,气体的热胀冷缩变化的更快、更明显。

5、物体的热胀冷缩是怎样引起的?

答:常见的物体都是由微粒组成的,而微粒总是在那里不断地运动着。物体的热胀冷缩和微粒运动有关:当物体吸热升温以后,微粒加快了运动,微粒之间的距离增大,物体就膨胀了;

当物体受冷后,微粒的运动减慢,微粒之间的距离缩小,物体就收缩了。

五 金属热胀冷缩吗

1、铜球在加热后不能穿过铁环冷却后能穿过铁环,说明铜也具有热胀冷缩的性质。钢条加热后会变长加粗、铁轨铺设时分段并留有缝隙、铁桥架在滚轴上,都说明大多数金属都有这样的性质。锑、镓、铋等金属正好与大多数相反,是热缩冷胀。

2、钢铁造的桥在温度变化时会热胀冷缩。因此,铁桥通常都架在滚轴上。

3、大多数固体和液体会热胀冷缩,但是有些固体和液体在一定条件下是(热缩冷胀)的,例如(锑)和(铋)这两种金属就是热缩冷胀的。(0—4之间)的水是冷胀热缩。

4、为什么水泥路面、铁轨、建筑物的各部分之间等都留有一小段缝隙?

答:因为水泥路面、铁轨、建筑材料等都具有热胀冷缩的性质,留有缝隙是为它们在温度变化时有自由伸缩的空间。

5、为什么架设电线时候不能太紧?

答:电线在夏天会热胀,冬天会冷缩。如果电线架设的太紧,冬天受冷收缩就会发生断裂。

6、为什么在寒冷的冬天自来水管(水表、饮料瓶里的饮料)会冻裂?

答:因为水在4摄氏度以下会热缩冷胀。冬天气温低,自来水管(水表)里的水(饮料瓶里的饮料)会结冰体积膨胀,所以就冻裂了。

六 热是怎样传递的

1、观察热的传递,用酒精灯一端加热粘有火柴的铁丝及涂有蜡的圆盘来研究,发现热在传递时由热源为起点,由热的一端向冷的一端传递或由热的物体向冷的物体传递。离热源越远,热传递的时间越长。

2、热是一种(能量)的形式,热能够从物体(温度较高)的一端向(温度较低)的一端传递,从温度高的物体向温度低的物体传递,直到两者温度相同。

3、热总是从较热的一端传向较冷的一端或者从温度高的物体传到温度低的物体,因此,热量绝不会消失。

4、热传导:通过直接接触,将热从一个物体传递给另一个物体,从物体的一部分传递到另一部分的传热方式叫做热传导。

5、热传递主要通过(热传导)、(对流)和(热辐射)三种方式来实现。热传递是一个从热源中心向四周各个方向逐渐扩散的过程。

七 传热比赛

1、一般来说,金属的传热能力强于非金属,通过金属和非金属物质的组合,可以有效地控制热量的传递。铜铝钢传热性能比较:铜>铝>钢

2、不同的物体传导热量的快慢是不一样的。

3、金属等传导热量快,我们把它们叫做热的良导体;

热的良导体吸热快、散热快。

木头、塑料等传导热量慢,我们把它们叫做热的不良导体;

热的不良导体吸热慢,散热慢。

4、热的不良导体,导热(慢),散热(慢),可以(减慢)物体热量的散失。热的良导体,导热(快),散热(快)。铁是热的(良导体),空气是一种热的(不良导体)。

八 设计一个保温杯

1、制作保温杯方法:1、隔绝空气与水相接触,设计一个用热的不良导体制用的盖子。2、用热的不良导体制成杯身或在杯子外制成一个杯套。棉衣棉被作为热的不良导体,所起的作用是阻止或减缓热量的传递速度。冷柜断电盖棉被是减缓空气中的热量向冷柜传递。

一 时间在流逝

1、我们可以用有规律或有节奏的活动来估计时间,如数心跳、有节奏地敲桌子等。但凭我们的估计不能准备地知道时间。在一分钟的时间里大约可写( )几个字、看( )行字,跑( )米路等。时间以不变的速度在流逝,平时觉得时间有快慢是我们的感觉在起作用。

2、钟表以时、分、秒计量时间,钟面上的秒针每转动一格,表示时间流逝了一秒钟,秒针转动一圈则表示时间流逝了一分钟。

3、在不同的情况下,我们对(相同时间)(时长)的主观感受会不一样,但时间是以(不变的速度)在延伸的。

4、借助自然界有规律运动的事物或现象,我们可以(估计时间)。

5、时间可以通过对(太阳运动周期的观察)和(投射形成的影子)来测量,一些(有规律运动的装置)也曾被用来计量时间。

二 太阳钟

1、在远古时代,人类用天上的(太阳)来计时。日出而作,日落而息,(昼夜交替)自然而然成了人类最早使用的(时间)单位——(天)。

2、古埃及人把天空分为36个星座,通过观察星座的运动,把夜晚确定为12个小时,同样,白昼也被确定为12个小时。但夏夜实际上大约有8个小时。

3、古代的人还常常用光影来计时,如日晷。(日晷)就是利用太阳在天空中位置的变化使地面上物体的影子长度和位置的变化而计时的。日晷又叫“日规”,是我国古代利用日影测量时间的一种计时仪器。日晷通常由铜制的指针(晷针)和石制的圆盘(晷面)组成。日晷依晷面所放位置的不同,可分为地平日晷和赤道日晷两种。

4、阳光下物体(影子的方向、长短)会慢慢地发生变化。(“日晷”)与(“圭表”)是根据(日影长度)制成的(计时器)。

三 用水测量时间

1、在一定的装置里,水能保持以(稳定的速度)往下流,人类根据这一特点制作(水钟)用来计时。

2、水钟在我国古代又叫“刻漏”,是根据滴水的等时性原理来计时的工具。滴水计时有两种方法,一种是利用特殊容器记录水漏完的时间(泄水型);

另一种是底部不开口的容器,记录它用多少时间把水接满(受水型)。受水型水钟的工作原理:水滴以固定的速度滴入圆筒,使得浮标会随水量的增加而逐渐上升,从而显示流逝的时间。泄水型水钟工作原理:容器内的水面随水的流出而下降,从而测出过去了多少时间。

3、在滴漏实验时,如果水是以水流的状态往下流时,水的流速是(不固定)的,随着水量的减少速度变(慢)。容器中水越少,则水下流的速度就(越慢)。

四 我的水钟

1、将两个塑料瓶去头去底进行组合,就可以制成一个简易水钟。设计制作的一般步骤为:一、先选择制作水钟的类型(受水型还是泄水型)二、确定总水量,三、使水的流速保持一样。受水型(使水流成水滴或使总水量保持不变。)泄水型(使水流成水滴)四、测出一分钟的水量。五、推测出其余十分钟的水量。

五 机械摆钟

1、摆钟的摆一分钟摆动60次,第分钟次数相同。一条细绳,上端固定,下端挂一个小重物,就组成一个简易的摆。摆在摆的过程中方向不变、速度不变,幅度越来越小。

2、虽然像日晷、水钟以及燃油钟、沙漏等一些简易的时钟已经可以让我们知道大概的时间,但是人们总是希望有更精确的时钟。随着科学和技术的发展,人们制作的(计时工具)越来越精确。摆钟的出现大大提高了时钟的精确度。

3、单摆由摆绳、摆锤组成的,同一个单摆每摆动一次所需的时间是(相同)的;

单摆具有等时性。根据摆的等时性原理制成了摆钟(座钟、挂钟)。,使时间的计量误差更小。

4、(机械摆钟)是(摆锤)与(齿轮操纵器)联合工作的。

六 摆的研究

1、不同的摆自由摆动时的快慢是(不一样)的。我们通过重物的重量、拉开的(幅度)、摆绳的(长度)来研究。摆的快慢与摆锤重量和摆幅大小无关。与摆绳的长短有关:摆绳越长,摆摆动越慢;

摆绳越短,摆摆动越快。

七 做一个摆钟

1、在不改变摆绳长度的前提下,摆锤的长度发生变化,发现摆锤越长,速度越慢,得出结论,摆的速度与摆的长度(摆绳加摆锤的长度)有关。摆越长,速度越慢。在摆锤最下面悬挂一个重物,发现挂了重物的摆比不挂重物的摆速度要慢。都挂了重物的摆在比较时发现:摆的速度与重物的位置有关,重物越往下,摆的速度越慢,越往上,摆的速度变快。我们要调整一个摆的摆动速度只需要调整重物的位置变可以了。由慢变快,重物上移,由快变慢,重物下移。

八 制作一个一分钟计时器

1、计时器的组成:(齿轮控制器)、(支轴)、(长针短针)、(摆锤)、(齿轮)、(垂体)。齿轮控制器由摆来控制、齿轮由垂体来控制。设计一个分钟的计时器,可以制成(水钟)、(摆钟)等。

2、设计时钟的要诀在于让指针以一定的快慢移动,几个世纪以来的时钟都是用摆锤控制与齿轮相连的指针运转的。

3、垂体时钟是利用下垂的重力来转动齿轮,当垂体所受的重力转动齿轮时,摆锤与齿轮操纵器会联合工作,控制转动的规律。

4、垂体时钟工作原理(摆锤与齿轮操纵器工作方法)

摆钟齿轮操纵器两端各有倒钩,可以卡在齿轮中间,以便控制齿轮的转动。而齿轮操纵器又与摆锤相连。当摆锤来回摆动时,总会松开其中一端的操纵器,让它可以跳过一个齿。这样,摆锤每摆动一次,操纵器就可以控制一个齿,如此一个接一个有规律的使齿轮转动,同时带动指针转动。

一 昼夜交替现象

1、在地球上看到昼和夜不停的交替出现,我们可以提出这样的几种假说:、(地球不动,太阳围着地球转)。、(太阳不动,地球围着太阳转)。、(太阳不动,地球自转)。、(地球围着太阳转,同时自转)。

2、(昼夜交替现象)有多种可能的解释。

3、(昼夜交替现象)与(地球和太阳的相对圆周运动)有关。

二 人类认识地球及其运动的历史

1、托勒密是古希腊天文学家,提出了“地心说”,主要观点:、地球是个球体;

、地球处于宇宙中心而且静止不动;

、所有的日月星辰都绕着地球转动。

2、哥白尼是波兰天文学家,提出了“日心说”,主要观点:、地球是球形的;

、地球24小时自转一周;

、太阳是宇宙的中心,地球等星体绕太阳转动。

3、(“日心说”)和(“地心说”)中有关地球及其运动的观点都可以解释(昼夜交替现象)。

三 证明地球在自转

1、将摆和它的支架放在一个圆形的底盘上,摆摆动时转动底盘,摆摆动的方向并没有随着底盘的转动而改变,而是基本不变。日心说发表300年后(1851年),法国物理学家傅科利用傅科摆证明了地球在自转。他发现:随着时间的推移,地面上刻度盘的方向与摆的方向发生的偏移,由于摆的方向能保持不变,所以只能说明地球在自己转动。傅科摆作为地球自转的证据,已为世界所公认。

2、摆具有摆动方向(保持不变)的特点。(傅科摆)是历史上证明地球自转的关键性证据。

四 谁先迎来黎明

1、(天体的东升西落)是因(地球自转)而发生的现象。

2、地球自转的方向与天体的东升西落(相反),即(逆时针)或(自西向东)。

3、(地球的自转方向)决定了不同地区迎来黎明的时间不同,(东边早)西边晚。

4、地球及其运动的特点:

5、不同地区所处的(经度差)决定了地区之间的(时差)。

6、从世界时区图中我们可以看出:人们以地球经线为标准,将地球分为24个时区。将通过英国伦敦格林尼治天文台的经线,定为0度经线。从0度经线向东180度属于东经,向西180度属于西经。经线每隔15度为一个时区,相邻两个时区的时间就差一小时。由于地球自转的方向是自西向东(逆时针),也就意味着越是东边的时区,就越先迎来黎明。在地图上越是东面(右边)的城市,越先见到太阳。知道东面的城市算西面的城市的时间,要减去时间差,知道西面的城市算东面城市的时间,要加上时间差。北京处于东八区,纽约处于西五区,相差13个小时,北京是白天时,纽约是黑夜。

五北极星“不动”的秘密

1、地球是围绕着地轴进行转动的,因为夜晚看天空北极星是不动的,它在地轴的北部延长线上。地轴是倾斜的,因为我们看到的北极星是在偏向于北部的天空中而不是在头顶正中。在一年四季里地轴倾斜的方向是不变的,因为一年时间里在天空我们看到的北极星都是不动的,它的位置没有发生变化,地轴一直指向于北极星。

2、天空中星星围绕(北极星)(顺时针)旋转,北极星相对“不动”,是(地球自转)产生的现象。

3、从(北极星)在天空中的位置可推测出(地轴是倾斜的)。

4、北极星为什么“不动”?5

答:地球是围绕着一个假想的轴在转动,称为地轴。北极星就处在地轴的延长线上。地球转动时,地轴始终倾斜着指向北极星,这就是北极星“不动”的秘密。

六地球在公转吗

1、地球公转的证据是:、人们在不同夜晚的同一时间观察天空中的星座时发现,天空中星座的位置会随着时间的推移由东向西移动,如北斗七星。、人们在观察远近不同的星星时产生的视觉上的相对位置差异恒星的周年视差,也能证明地球在公转。我们在地球上观看两颗远近不同的星星时,不同的季节两颗星之间的相对距离和位置发生了变化。(恒星周年视差)是历史上证明地球公转的关键性证据。、现在,人们通过太空望远镜、人造卫星等,能直接观察到地球确实在围绕太阳公转。

2、地球在自转的同时,还围绕(太阳)公转,公转就是地球围绕着(太阳)转动;

公转的方向是(自西向东);

公转一周是(365天/一年)。

3、在围绕某一物体(公转)时,在(公转轨道的不同位置)会观察到远近不同的物体存在(视觉位置差异)。

七为什么一年有四季

1、在春夏秋冬不同季节的正午,古人发现在同一地点的杆子在地面上的影子长度是不一样的。其中春秋季影子适中,夏季最短,冬季最长,这与太阳在天空中的高度有关。

2、阳光的直射和斜射造成了地球上不同地区气温的不同,春秋季阳光直射点在赤道地区,赤道地区最热,南北两半球阳光是斜射的,所以春秋季气温适宜。北半球夏天时阳光的直射点在北半球,南半球在斜射的,阳光要弱,所以北半球地夏天南半球是冬天。北半球是冬季时阳光的直射点在南半球,北半球阳光是斜射的,阳光要弱,所以南半球是夏天,南北两半球的季节正好相反。

3、四季的成因:地球在公转的过程中,由于地轴的倾斜,导致阳关有规律性的直射或斜射某一地区,因此气温也有规律的变化,形成四季。

4、(四季的形成)与(地球的公转)、(地轴的倾斜)有关。

八极昼和极夜的解释

1、在地球的南北两极,半年时间是白天半年时间是晚上,而且南北两极正好相反。主要的原因是地球是倾斜的,太阳能照亮地球的一半,地球在公转过程中倾斜于太阳的一端在地球自转时一直能被太阳光照亮。

2、地球的运动:自转:自西向东、逆时针,绕着地轴且倾向于北方,大约24小时为一周期,用傅科摆来证明,产生了昼夜交替、不同地区迎来黎明的时间不同、北极星不动等现象。公传:自西向东逆时针绕着太阳转,一年为一周期,用恒星的周年视差、不同季节同一时间天空中星座的位置的移动来证明。产生了四季、南北极的极昼极夜现象。

3、在认识地球的运动过程中还有一些有趣的现象如日照冬短夏长、地球公转的轨道是椭圆形等。

4、(地轴倾斜角度的大小)可以影响(极昼极夜)发生的地区范围。地轴倾斜的(角度大小)和极昼极夜发生的(范围大小)有关

5、(极昼和极夜现象)与(地球公转)、(自转)和(地轴倾斜)有关。

6、极昼和极夜是怎么形成的?

答:在地球绕太阳公转的过程中,由于地轴倾斜大约23度,导致阳光有规律的直射或斜射南半球或北半球,形成了南极和北极的极昼或极夜现象。

教科版五年级科学下册教案

教学目的:

1、知道摆具有保持摆动方向不变的特点。

2、通过有关“傅科摆”的资料,初步理解“傅科摆”证明了地球在自转。

3、初步认识昼夜交替现象与地球自转有关。

4、认识到地球自转虽然不能直接观察到,但是能通过实验证实。

教学重点:认识摆具有保持摆动方向不变的特点。

教学难点:理解傅科摆可以证明地球自转。

教学准备:单摆一个,支架一个,有关“傅科摆”的视频资料等。

教学过程:

激情导入 明确目标

我们都生活在地球上,地球是否在运动呢?(生:自转、公转)

的确,地球在绕着太阳公转的过程中也在不停的自转,随着航天技术的不断发展,我们可以通过人造地球卫星等设备观察到地球在自西向东地自转。而在古代,人们是无法直接观察到地球自转的,那他们是怎样证明地球在自转的呢?今天,就让我们一起来学习《证明地球在自转》。

自主学习 合作交流

(一)认识摆的特点

(1)出示单摆明确起摆要求,并进行前后摆动,问:谁能描述一下现在摆锤的摆动方向?

师:这是一个摆,(板书:摆)它是由一条摆绳和一个摆锤组成的,古人就是通过摆发现地球在自转的,所以接下来我们就要对摆进行研究。谁愿意上来帮助老师将摆锤南北方向摆动起来?(请一名学生起摆)(口述起摆要求)拉紧摆绳,提起摆锤,靠近铁杆,与铁杆保持一定的距离,然后自然松手。

(2)师:现在我们观察到摆是南北来回摆的,如果老师将摆的整个装置转动90度,摆锤的摆动方向会发生变化吗?(学生猜测)师:为什么这么猜?转动180度呢?转360度呢?

师:我们还是通过实验来研究摆的方向在摆架转动后是否会发生变化。(出示底盘)这是一个可以自由旋转地圆盘,我们将摆架底座按照南北朝向放到圆盘上,方便我们南北方向起摆。接下来怎样研究摆的摆动方向在摆架转动后是否会发生变化呢?(学生设计方案)这个方案不错,但要顺利完成这个实验可不容易,我们一起来看一看实验的注意事项。(起摆后缓慢而平稳地转动底盘,幅度不能太大,尽可能减少外力对摆动方向的影响。在转动一圈的过程中仔细观察摆的摆动方向,特别留意摆架在转动90度,180度,360度这几个位置时摆的摆动方向。切记,在观察的过程中千万不要停下圆盘的转动,而是要求圆盘始终以一定的速度缓慢而平稳地转动)(出示注意事项)

教师强调注意点:

①小组内分工明确

②摆架底座南北方向摆放,摆锤南北方向起摆;

③缓慢而平稳地将底盘转动一圈。

④底盘转动一圈地过程中,随时观察90度,180度,360度摆的摆动方向。

教师演示转动180度、270度、360度,并出示实验记录单,要求实验完成后及时填写记录单。

(3)学生领取材料分组实验,完成实验记录单。

(4)交流实验结果。通过实验我们发现摆始终在南北方向来回摆动,那东西方向起摆,转动一圈后摆动方向会变化吗?(学生猜测)教师演示东西方向起摆。

(5)教师简单小结:大家通过实验发现摆在摆动过程中,摆的摆动方向基本不会随着摆架的转动而发生明显地改变,我们也可以说摆具有保持摆动方向不变的特点。(板书:保持摆动方向不变的特点。)在这里老师要告诉大家我们的这项发现和许多科学家通过实验证明的结论是一致的。

展示点拨 精讲质疑

(二)认识傅科摆可以证明地球在自转

1、引入:早在一百多年前,法国有一个叫傅科的科学家也在研究摆的性质,在研究中发现了一个惊奇的现象,什么现象,我们一起来看一下。

2、播放傅科摆的视频资料。

3、师:接下来,请同学们拿出抽屉里的资料,结合资料思考这三个问题。

傅科摆是一个特殊的摆,和我们的摆相比它特殊在什么地方?

(生:67米的摆长(20层楼高),27千克的铅球组成的摆。)

傅科在实验中发现了什么现象?

摆在一段时间内沿着顺时针方向发生了偏转

他认为是什么原因造成这种现象的?

(生:由于地球自转引起的)

师:傅科摆摆动平面沿着顺时针方向转动是由于地球自转引起的,反过来说傅科摆的这种变化就有力的证明了地球在自转。(板书:傅科摆)

4、介绍北京天文馆内的傅科摆。

师:我国北京天文馆内也有一个傅科摆,让我们通过视频来认识它。

5、教师小结:

通过视频我们发现傅科摆转动一周所需要的时间与当地的纬度有关。在北京纬度为40度的地区,傅科摆转动一周需要37个小时多,纬度越低,傅科摆转动一周需要的时间越长,如临安的纬度约是北纬30度,所以在临安当地傅科摆的摆动平面转动一周需要的时间约是51个小时多。

拓展延伸 巩固提高

(三)寻找其它证据证明地球在自转

(1)过渡:同学们,通过学习我们知道了傅科摆是可以证明地球在自转,除此之个,你知道生活中还有哪些现象也可以证明地球在自转呢?

水的旋窝,河床的冲击、昼夜交替、炮弹运动方向的偏离、探井测量法等等

(2)交流资料,拓展认识。

(3)交流昼夜交替现象产生的原因。

(生:地球本身不发光,也不透光,太阳照射到的一面是白天,照射不到的一面是黑夜,由于地自不停地西向东自转,就形成了昼夜交替。)

一、填空:

1. 古希腊天文学家托勒密关于地球和地球的运动,他提出了 ( )理论。他认为,( )处于宇宙中心,而且静止不动;所有的日月星辰都绕着( ) 旋转;

2、波兰天文学家 ( ),提出了( ),并在临终前出版了他的不朽名著《 》。他认为 ( )处于宇宙中心,而且是静止不动的。

3、法国有一位叫( )的物理学家,根据他在日常生活中的发现,用实验证实了地球在自转。

4、地球转动时,地轴始终倾斜着指向( )。A、头顶正上方 B、北极星 C、北斗星

简答题:

1、用学过的知识解释,我们在地球上看到太阳东升西落,这一现象说明了什么?

2、对于北极星的“不动”,你是怎样解释的?

总结反思 教学延伸

其实在我们生活中还有一些其他的现象也能证明地球在自转,只要你能仔细观察,让我们像傅科这样做个有心的学习者。 北半球水流漩涡都是逆时针旋转,正是因为地球自转的缘故。

新教科版五年级科学下册教案(新教科版五年级科学)