高一数学题型归纳总结(高中函数题型方法全归纳)
高一数学题型归纳总结(高中函数题型方法全归纳)

跪求高中数学题型归纳(湖南省)!

几种数学题型解法归纳

第一种:数列(等差数列与等比数列)

——北京十二中特级教师 刘文武

清华附中特级教师 张小英

数列是高中数学中的一个重要课题,也是数学竞赛中经常出现的问题。数列中最基本的是等差数列与等比数列。

所谓数列,就是按一定次序排列的一列数。如果数列{an}的第n项an与项数(下标)n之间的函数关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式。

从函数角度看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,…n})的函数当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式。

为了解数列竞赛题,首先要深刻理解并熟练掌握两类基本数列的定义、性质有关公式,把握它们之间的(同构)关系。

一、 等差数列

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列{an}的通项公式为:

an=a1+(n-1)d (1)

前n项和公式为:

(2)

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

在等差数列{an}中,等差中项:

且任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,且m+n=p+q,则有

am+an=ap+aq

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

二、 等比数列

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。

等比数列{an}的通项公式是:

an=a1·qn-1

前n项和公式是:

在等比数列中,等比中项:

且任意两项am,an的关系为an=am·qn-m

如果等比数列的公比q满足0<∣q∣<1,这个数列就叫做无穷递缩等比数列,它的各

项的和(又叫所有项的和)的公式为:

从等比数列的定义、通项公式、前n项和公式可以推出:

a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,则有:

ap·aq=am·an,

记πn=a1·a2…an,则有

π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则{Can}是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

重要的不仅是两类基本数列的定义、性质,公式;而且蕴含于求和过程当中的数学思想方法和数学智慧,也是极其珍贵的,诸如“倒排相加”(等差数列),“错位相减”(等比数列)。

数列中主要有两大类问题,一是求数列的通项公式,二是求数列的前n项和。

三、 范例

例1.设ap,aq,am,an是等比数列{an}中的第p、q、m、n项,若p+q=m+n,求证:apoaq=amoan

证明:设等比数列{an}的首项为a1,公比为q,则

ap=a1·qp-1,aq=a1·qq-1,am=a1·qm-1,an=a1·qn-1

所以:

ap·aq=a12qp+q-2,am·an=a12·qm+n-2,

故:ap·aq=am+an

说明:这个例题是等比数列的一个重要性质,它在解题中常常会用到。它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积,即:

a1+k·an-k=a1·an

对于等差数列,同样有:在等差数列{an}中,距离两端等这的两项之和等于首末两项之和。即:

a1+k+an-k=a1+an

例2.在等差数列{an}中,a4+a6+a8+a10+a12=120,则2a9-a10=

A.20 B.22 C.24 D28

解:由a4+a12=2a8,a6+a10 =2a8及已知或得

5a8=120,a8=24

而2a9-a10=2(a1+8d)-(a1+9d)=a1+7d=a8=24。

故选C

例3.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有( )

A.a1+a101>0 B. a2+a100<0 C.a3+a99=0 D.a51=51

[2000年北京春季高考理工类第(13)题]

解:显然,a1+a2+a3+…+a101

故a1+a101=0,从而a2+a100=a3+a99=a1+a101=0,选C

例4.设Sn为等差数列{an}的前n项之各,S9=18,an-4=30(n>9),Sn=336,则n为( )

A.16 B.21 C.9 D8

解:由于S9=9×a5=18,故a5=2,所以a5+an-4=a1+an=2+30=32,而,故n=21选B

例5.设等差数列{an}满足3a8=5a13,且a1>0,Sn为其前n项之和,则Sn(n∈N*)中最大的是( )。 (1995年全国高中联赛第1题)

(A)S10 (B)S11 (C)S20 (D)S21

解:∵3a8=5a13

∴3(a1+7d)=5(a1+12d)

令an≥0→n≤20;当n>20时an<0

∴S19=S20最大,选(C)

注:也可用二次函数求最值

例6.设等差数列的首项及公差均为非负整数,项数不少于3,且各项的和为972,则这样的数列共有( )

(A)2个 (B)3个 (C)4个 (D)5个

[1997年全国高中数学联赛第3题]

解:设等差数列首项为a,公差为d,则依题意有( )

即[2a+(n-1)d]on=2×972 (*)

因为n是不小于3的自然数,97为素数,故数n的值必为2×972的约数(因数),它只能是97,2×97,972,2×972四者之一。

若d>0,则d≥1由(*)式知2×972≥n(n-1)d≥n(n-1)故只可能有n=97,(*)式化为:a+48d=97,这时(*)有两组解:

若d=0,则(*)式化为:an=972,这时(*)也有两组解。

故符今题设条件的等差数列共4个,分别为:

49,50,51,…,145,(共97项)

1,3,5,…,193,(共97项)

97,97,97,…,97,(共97项)

1,1,1,…,1(共972=9409项)

故选(C)

例7.将正奇数集合{1,3,5,…}由小到大按第n组有(2n-1)个奇数进行分组:

{1}, {3,5,7},{9,11,13,15,17},…

(第一组) (第二组) (第三组)

则1991位于第 组中。

[1991年全国高中数学联赛第3题]

解:依题意,前n组中共有奇数

1+3+5+…+(2n-1)=n2个

而1991=2×996-1,它是第996个正奇数。

∵312=961<996<1024=322

∴1991应在第31+1=32组中。

故填32

例8.一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为 。

[1989年全国高中联赛试题第4题]

解:设该数为x,则其整数部分为[x],小数部分为x-[x],由已知得:x·(x-[x]=[x]2

其中[x]>0,0<x-[x]<1,解得:

由0<x-[x]<1知,

∴[x]=1,

故应填

例9.等比数列{an}的首项a1=1536,公比,用πn表示它的前n项之积,则πn(n∈N*)最大的是( )

(A)π9 (B)π11 (C)π12 (D)π13

[1996年全国高中数学联赛试题]

解:等比数列{an}的通项公式为,前n项和

因为

故π12最大。

选(C)

例10.设x≠y,且两数列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均为等差数列,那么= 。

[1988年全国高中联赛试题]

解:依题意,有y-x=4(a2-a1) ∴;

又y-x=3(b3-b2) ∴

例11.设x,y,Z是实数,3x,4y,5z成等比数列,且成等差数列,则的值是 。[1992年全国高中数学联赛试题]

解:因为3x,4y,5z成等比数列,所以有

3x·5z=(4y)2 即16y2=15xz ①

又∵成等差数列,所以有即②

将②代入①得:

∵x≠0,y≠0,z≠0

∴64xz=15(x2+2xz+z2)

∴15(x2+z2)=34xz

例12.已知集合M={x,xy,lg(xy)}及N={0,∣x∣,y}

并且M=N,那么的值等于 。

解:由M=N知M中应有一元素为0,任由lg(xy)有意义知xy≠0,从而x≠0,且y≠0,故只有lg(xy)=0, xy=1,M={x,1,0};若y=1,则x=1,M=N={0,1,1}与集合中元素互异性相连,故y≠1,从而∣x∣=1,x=±1;由x=1 y=1(含),由x=-1 y=-1,M=N={0,1,-1}

此时,

从而

注:数列x,x2,x3,…,x2001;以及

在x=y=-1的条件下都是周期为2的循环数列,S2n-1=-2,S2n=0,故2001并不可怕。

例13.已知数列{an}满足3an+1+an=4(n≥1)且a1=9,其前n项之和为Sn,则满足不等式( )

∣Sn-n-6∣<的最小整数n是( )

(A)5 (B)6 (C)7 (D)8

解:[1994年全国高中数学联赛试题]

由3an+1+an=4(n≥1)

3an+1-3=1-an

故数列{an-1}是以8为首项,以为公比的等比数列,所以

当n=7时满足要求,故选(C)

[注]:数列{an}既不是等差数列,也不是等比数列,而是由两个项数相等的等差数列:1,1,…,1和等比数列: 的对应项的和构成的数列,故其前n项和Sn可转化为相应的两个已知数列的和,这里,观察通项结构,利用化归思想把未知转化为已知。

例14.设数列{an}的前n项和Sn=2an-1(n=1,2,…),数列{bn}满足b1=3,bk+1=ak+bk(k=1,2,…)求数列{bn}的前n项和。

[1996年全国高中数学联赛第二试第一题]

解:由Sn=2an-1,令n=1,得S1=a1=2a1-1,∴a1=1 ①

又Sn=2an-1 ②

Sn-1=2an-1-1 ③

②-③得:Sn-sn-1=2an-2an-1

∴an=2an-2an-1

∴数列{an}是以a1=1为首项,以q=2为公比的等比数列,故an=2n-1 ④

由⑤

∴以上诸式相加,得

注:本题综合应用了a1-s1,a3=Sn-Sn-1(n≥2)以及等差数列、等比数列求和公式以及叠加等方法,从基本知识出发,解决了较为复杂的问题。选准突破口,发现化归途径,源于对基础知识的深刻理念及其联系的把握。

例15.n2个正数排成n行n列

a11,a12,a13,a14,…,a1n

a21,a22,a23,a24,…,a2n

a31,a32,a33,a34,…,a3n

a41,a42,a43,a44,…,a4n

an1,an2,an3,an4,…,ann。

其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等。已知

[1990年全国高中数学联赛第一试第四题]

解:设第一行数列公差为d,纵行各数列公比为q,则原n行n列数表为:

故有:

②÷③得,代入①、②得④

因为表中均为正数,故q>0,∴,从而,因此,对于任意1≤k≤n,有

记S=a11+a22+a33+…+ann ⑤

⑤-⑥得:

评注:本题中求和,实为等差数列an=n与等比数列的对应项乘积构成的新数列的前n项的和,将⑤式两边同乘以公比,再错项相减,化归为等比数列求各。这种方法本是求等比数列前n项和的基本方法,它在解决此类问题中非常有用,应予掌握。课本P137复习参考题三B组题第6题为:求和:S=1+2x+3x2+…+nxn-1;2003年北京高考理工类第(16)题:已知数列{an}是等差数列,且a1=2,a1+a2+a3=12,(I)求数列{an}的通项公式;(II)令bn=an·xn(x∈R),求数列{bn}的前n项和公式。都贯穿了“错项相减”方法的应用。

第二种:指数函数与对数函数 ————北京十二中 刘文武 指数、对数以及指数函数与对数函数,是高中代数非常重要的内容。无论在高考及数学竞赛中,都具有重要地位。熟练掌握指数对数概念及其运算性质,熟练掌握指数函数与对数函数这一对反函数的性质、图象及其相互关系,对学习好高中函数知识,意义重大。 一、 指数概念与对数概念: 指数的概念是由乘方概念推广而来的。相同因数相乘a·a……a(n个)=an导出乘方,这里的n为正整数。从初中开始,首先将n推广为全体整数;然后把乘方、开方统一起来,推广为有理指数;最后,在实数范围内建立起指数概念。 欧拉指出:“对数源出于指数”。一般地,如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b叫做以a为底N的对数,记作:logaN=b 其中a叫做对数的底数,N叫做真数。 ab=N与b=logaN是一对等价的式子,这里a是给定的不等于1的正常数。当给出b求N时,是指数运算,当给出N求b时,是对数运算。指数运算与对数运算互逆的运算。 二、指数运算与对数运算的性质 1.指数运算性质主要有3条: ax·ay=ax+y,(ax)y=axy,(ab)x=ax·bx(a>0,a≠1,b>0,b≠1) 2.对数运算法则(性质)也有3条: (1)loga(MN)=logaM+logaN (2)logaM/N=logaM-logaN (3)logaMn=nlogaM(n∈R) (a>0,a≠1,M>0,N>0) 3.指数运算与对数运算的关系: X=alogax;mlogan=nlogam 4.负数和零没有对数;1的对数是零,即 loga1=0;底的对数是1,即logaa=1 5.对数换底公式及其推论: 换底公式:logaN=logbN/logba 推论1:logamNn=(n/m)logaN 推论2: 三、指数函数与对数函数 函数y=ax(a>0,且a≠1)叫做指数函数。它的基本情况是: (1)定义域为全体实数(-∞,+∞) (2)值域为正实数(0,+∞),从而函数没有最大值与最小值,有下界,y>0 (3)对应关系为一一映射,从而存在反函数--对数函数。 (4)单调性是:当a>1时为增函数;当00,a≠1), f(x+y)=f(x)·f(y),f(x-y)=f(x)/f(y) 函数y=logax(a>0,且a≠1)叫做对数函数,它的基本情况是: (1)定义域为正实数(0,+∞) (2)值域为全体实数(-∞,+∞) (3)对应关系为一一映射,因而有反函数——指数函数。 (4)单调性是:当a>1时是增函数,当00,a≠1), f(x·y)=f(x)+f(y), f(x/y)=f(x)-f(y) 例1.若f(x)=(ax/(ax+√a)),求f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001) 分析:和式中共有1000项,显然逐项相加是不可取的。需找出f(x)的结构特征,发现规律,注意到1/1001+1000/1001=2/1001+999/1001=3/1001+998/1001=…=1, 而f(x)+f(1-x)=(ax/(ax+√a))+(a1-x/(a1-x+√a))=(ax/(ax+√a))+(a/(a+ax·√a))=(ax/(ax+√a))+((√a)/(ax+√a))=((ax+√a)/(ax+√a))=1规律找到了,这启示我们将和式配对结合后再相加: 原式=[f(1/1001)+f(1000/1001)]+[f(2/1001)+f(999/1001)]+…+[f(500/1001)+f(501/1001)]=(1+1+…+1)5000个=500 说明:观察比较,发现规律f(x)+f(1-x)=1是本例突破口。 (1)取a=4就是1986年的高中数学联赛填空题:设f(x)=(4x/(4x+2)),那么和式f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001)的值= 。 (2)上题中取a=9,则f(x)=(9x/(9x+3)),和式值不变也可改变和式为求f(1/n)+f(2/n)+f(3/n)+…+f((n-1)/n). (3)设f(x)=(1/(2x+√2)),利用课本中推导等差数列前n项和的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为 。这就是2003年春季上海高考数学第12题。 例2.5log25等于:( ) (A)1/2 (B)(1/5)10log25 (C)10log45 (D)10log52 解:∵5log25=(10/2)log25=(10log25)/(2log25)=(1/5)×10log25 ∴选(B) 说明:这里用到了对数恒等式:alogaN=N(a>0,a≠1,N>0) 这是北京市1997年高中一年级数学竞赛试题。 例3.计算 解法1:先运用复合二次根式化简的配方法对真数作变形。 解法2:利用算术根基本性质对真数作变形,有 说明:乘法公式的恰当运用化难为易,化繁为简。 例4.试比较(122002+1)/(122003+1)与(122003+1)/(122004+1)的大小。 解:对于两个正数的大小,作商与1比较是常用的方法,记122003=a>0,则有 ((122002+1)/(122003+1))÷((122003+1)/(122004+1))=((a/12)+1)/(a+1)·((12a+1)/(a+1))=((a+12)(12a+1))/(12(a+1)2)=((12a2+145a+12)/(12a2+24a+12))>1 故得:((122002+1)/(122003+1))>((122003+1)/(122004+1)) 例5.已知(a,b为实数)且f(lglog310)=5,则f(lglg3)的值是( ) (A)-5 (B)-3 (C)3 (D)随a,b的取值而定 解:设lglog310=t,则lglg3=lg(1/log310)=-lglog310=-t 而f(t)+f(-t)= ∴f(-t)=8-f(t)=8-5=3 说明:由对数换底公式可推出logab·logba=(lgb/lga)·(lga/lgb)=1,即logab=(1/logba),因而lglog310与lglg3是一对相反数。设中的部分,则g(x)为奇函数,g(t)+g(-t)=0。这种整体处理的思想巧用了奇函数性质使问题得解,关键在于细致观察函数式结构特征及对数的恒等变形。

第三种:二次函数 二次函数是最简单的非线性函数之一,而且有着丰富内涵。在中学数学数材中,对二次函数和二次方程,二次三项式及二次不等式以及它们的基本性质,都有深入和反复的讨论与练习。它对近代数学,乃至现代数学,影响深远,为历年来高考数学考试的一项重点考查内容,历久不衰,以它为核心内容的重点试题,也年年有所变化,不仅如此,在全国及各地的高中数学竞赛中,有关二次函数的内容也是非常重要的命题对象。因此,必须透彻熟练地掌握二次函数的基本性质。 学习二次函数的关键是抓住顶点(-b/2a,(4ac-b2)/4a),顶点的由来体现了配方法(y=ax2+bx+c=a(x+b/2a)2+(4ac-b2)/4a);图象的平移归结为顶点的平移(y=ax2→y=a(x-h)2+k);函数的对称性(对称轴x=-b/2a,f (-b/2a+x)=f (-b/2a-x),x∈R),单调区间(-∞,-b/2a),[-b/2a,+∞]、极值((4ac-b2)/4a),判别式(Δb2-4ac)与X轴的位置关系(相交、相切、相离)等,全都与顶点有关。 一、“四个二次型”概述 在河南教育出版社出版的《漫谈ax2+bx+c》一书中(作者翟连林等),有如下一个“框图”: (一元)二次函数 y=ax2+bx+c (a≠0) → a=0 → (一元)一次函数 y=bx+c(b≠0) ↑ ↑ ↑ ↑ (一元)二次三项式 ax2+bx+c(a≠0) → a=0 → 一次二项式 bx+c(b≠0) ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 一元二次方程 ax2+bx+c=0(a≠0) → a=0 → 一元一次方程 bx+c=0(b≠0) ↓ ↓ ↓ 一元二次不等式 ax2+bx+c>0或 ax2+bx+c<0(a≠0) → a=0 → 一元一次不等式 bx+c>0或 bx+c<0(b≠0) 观察这个框图,就会发现:在a≠0的条件下,从二次三项式出发,就可派生出一元二次函数,一元二次方程和一元二次不等式来。故将它们合称为“四个二次型”。其中二次三项式ax2+bx+c(a≠0)像一颗心脏一样,支配着整个“四个二次型”的运动脉络。而二次函数y=ax2+bx+c(a≠0),犹如“四个二次型”的首脑或统帅:它的定义域即自变量X的取值范围是全体实数,即n∈R;它的解析式f(x)即是二次三项式ax2+bx+c(a≠0);若y=0,即ax2+bx+c=0(a≠0),就是初中重点研究的一元二次方程;若y>0或y<0,即ax2+bx+c>0或ax2+bx+c<0(a≠0),就是高中一年级重点研究的一元二次不等式,它总揽全局,是“四个二次型”的灵魂。讨论零值的一元二次函数即一元二次方程是研究“四个二次型”的关键所在,它直接影响着两大主干:一元二次方程和一元二次不等式的求解。一元二次方程的根可看作二次函数的零点;一元二次不等式的解集可看作二次函数的正、负值区间。心脏、头脑、关键、主干、一句话,“四个二次型”联系密切,把握它们的相互联系、相互转化、相互利用,便于寻求规律,灵活运用,使学习事半功倍。 二、二次函数的解析式 上面提到,“四个二次型”的心脏是二次三项式:二次函数是通过其解析式来定义的(要特别注意二次项系数a≠0);二次函数的性质是通过其解析式来研究的。因此,掌握二次函数首先要会求解析式,进而才能用解析式去解决更多的问题。 Y=ax2+bx+c(a≠0)中有三个字母系数a、b、c,确定二次函数的解析式就是确定字母a、b、c的取值。三个未知数的确定需要3个独立的条件,其方法是待定系数法,依靠的是方程思想及解方程组。 二次函数有四种待定形式: 1.标准式(定义式):f(x)=ax2+bx+c.(a≠0) 2.顶点式: f(x)=a(x-h)2+k .(a≠0) 3.两根式(零点式):f(x)=a(x-x1)(x-x2). (a≠0) 4.三点式:(见罗增儒《高中数学竞赛辅导》) 过三点A(x1,f (x1))、B(x2,f (x2))、C(x3,f (x3))的二次函数可设为 f (x)=a1(x-x2)(x-x3)+a2(x-x1)(x-x3)+a3(x-x1)(x-x2)把ABC坐标依次代入,即令x=x1,x2,x3,得 f (x1)=a1(x1-x2)(x1-x3), f (x2)=a2(x2-x1)(x2-x3), f (x3)=a3(x3-x1)(x3-x2) 解之,得:a1=f (x1)/ (x1-x2)(x1-x3),a2=f (x2)/ (x2-x1)(x2-x3),a3=f (x3)/ (x3-x1)(x3-x2) 从而得二次函数的三点式为:f(x)=[f(x1)/(x1-x2)](x1-x3)(x-x2)(x-x3)+[f(x2)/ (x2-x1)(x2-x3)](x-x1)(x-x3)+[f(x3)/(x3-x1)(x3-x2)](x-x1)(x-x2)根据题目所给的不同条件,灵活地选用上述四种形式求解二次函数解析式,将会得心应手。 高考的重点一般在 常用函数 常用双曲线+直线 数列 三角

二项式定理 立体几何 排列组合加概率等其他一些知识是比较小的部分

重要的是基础 高一的话上课的基本解题方法一定要熟练掌握 并且不能忘记 到了高三再练习就很麻烦了 还有不要忽视概念 往往很多题目是考概念的

难度方面要视文理科而定 但是70%题目肯定用基本知识就能做的 20%需要结合各种知识并且动脑 真正有难度的题目只有10%

如果数学是弱项就一定要重视知识的反复整理和练习 不一定要以制做题 而是要把做错的题目和典型的题目反复练习 基本的方法和解题思路是很重要的

还有就是 不能放弃 数学学科要有明显提高一定有一个过程 一般是半个学期到一个学期的时间 如果一旦放弃就功亏一篑了

高中数学主要是代数,三角,几何三个部分.内容相互独立但是解题时常互相提供方法,等高三你就知道了.

必修的:

代数部分有:

1 集合与简易逻辑.其实就是集合,命题,充要条件三点,很浅显高考也不会单出这类的题

2 函数.先是对于函数的描述,有映射定义域对应法则植域;然后是性质,三个,单调性奇偶性周期性;最后是指数函数还有对数函数,是两个基本的函数,要研究他们的性质和图象

3 三角.三角其实就是个工具,比较烦人,公式背下来再多练练用的滚瓜烂熟就行了

4 几何.也就是平面解析几何,用坐标法定量的研究平面几何问题.学几个定义,然后是直线的方程,圆的方程,圆锥曲线方程.

哎对不起啊现在我也高三总复习了一说就随口说了这么多,其实你不用知道那么多,三年呢自然而然就都学了.

现在建议你最好能对数学感兴趣,自己暗示自己一下;上课认真听讲,把知识记牢,免得以后补很麻烦;学会总结,抓住知识之间的联系

数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:

一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

选我!!!

高一数学函数题型及解题技巧有哪些?

高中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

K12资源实时更新

来自:百度网盘

提取码: 1234

复制提取码跳转

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。 高一数学函数题型及解题技巧有:代入法、单调性法、待定系数法、换元法、构造方程法。

一、代入法

代入法主要有两种方式,一种是出现在选择题中,就是直接把题目的答案选项带入到题目中进行验证,这也是相对比较快的一种办法,另外一种就是求已知函数关于某点或者某条直线的对称函数,带入函数的表达公式或者函数的性质,直接性的求解题目,通常适用于填空题,难度也也不会太大。

高中函数题型方法全归纳

高一的函数题型有函数的定义与性质、函数的图像与性质、函数的运算与复合、函数方程与不等式等。解题技巧有仔细读题、分析函数的定义和性质、利用图像来推断函数的性质、运用数学方法进行计算和推导、注意解题的过程和结果的合理性等。

高一的函数题型:

1.函数的定义与性质

要求根据给定的函数定义和性质,求函数的解析式、函数的定义域、值域、最值等。解题技巧是仔细分析函数的定义和性质,并根据这些信息进行推导和计算。

2.函数的图像与性质

要求根据函数的图像来确定函数的性质,如函数的单调性、奇偶性、周期性等。解题技巧是观察函数的图像,并根据图像上的特点来判断函数的性质。

3.函数的运算与复合

高一均值不等式题型归纳

介绍均值不等式

均值不等式是数学中一种重要的不等式,它可以被分为10种不同类型的题目。在本篇文章中,我们将会逐一讨论这10种题目类型。

第一种题型:两个数的均值不小于它们的几何平均数

如果有两个数a和b,它们的简单平均数为(a+b)/2,几何平均数为sqrt(ab),则根据均值不等式,我们有:

(a+b)/2 ≥ sqrt(ab)

这个定理可以用来证明不等式,或者得出不要具体数值的范围。

第二种题型:n个数的平均数不小于它们的几何平均数

如果有n个数a1,a2,…,an,则它们的平均数为(a1+a2+…+an)/n,它们的几何平均数为(a1×a2×…×an)^(1/n),则根据均值不等式,我们有:

(a1+a2+…+an)/n ≥ (a1×a2×…×an)^(1/n)

这个定理可以用来求取包含多个变量的式子的范围。

第三种题型:n个数的平均值不小于它们的最小值

如果有n个数a1,a2,…,an,则它们的平均数为(a1+a2+…+an)/n,最小值为min(a1,a2,…,an),则根据均值不等式,我们有:

(a1+a2+…+an)/n ≥ min(a1,a2,…,an)

这个定理可以用来在已知最小值的情况下计算平均值。

第四种题型:n个数的平均值不小于它们的中位数

如果有n个数a1,a2,…,an,则它们的平均数为(a1+a2+…+an)/n,中位数为median(a1,a2,…,an),则根据均值不等式,我们有:

(a1+a2+…+an)/n ≥ median(a1,a2,…,an)

这个定理可以用来在已知中位数的情况下计算平均值。

第五种题型:n个正数的插值不等式

如果有n个正数a1,a2,…,an和n个正实数λ1,λ2,…,λn,且λ1+λ2+…+λn=1,则根据插值不等式,我们有:

λ1a1+λ2a2+…+λnan ≥ a1^(λ1)a2^(λ2)…an^(λn)

这个定理可以用来计算正数的加权平均值。

第六种题型:两个一次函数的均值不等式

如果有两个一次函数f(x)=ax+b和g(x)=cx+d,则它们的平均值为(f(x)+g(x))/2,根据均值不等式,我们有:

(f(x)+g(x))/2 ≥ sqrt(f(x)g(x))

这个定理可以用来计算两个一次函数的范围。

第七种题型:多个一次函数的均值不等式

如果有n个一次函数f1(x),f2(x),…,fn(x),则它们的平均值为(f1(x)+f2(x)+…+fn(x))/n,根据均值不等式,我们有:

(f1(x)+f2(x)+…+fn(x))/n ≥ sqrt(n∏fi(x))

这个定理可以用来计算多个一次函数的范围。

第八种题型:拉格朗日平均值不等式

如果有n个数a1,a2,…,an,且它们的平均数为m,则根据拉格朗日平均值不等式,我们有:

(a1-a2)^2+(a2-a3)^2+…+(an-1-an)^2 ≥ 0

这个定理可以用来证明均值不等式,或者得出特定条件下的确切范围。

第九种题型:柯西-施瓦茨不等式

如果有n个实数a1,a2,…,an和n个实数b1,b2,…,bn,则根据柯西-施瓦茨不等式,我们有:

(a1b1+a2b2+…+anbn)^2 ≤ (a1^2+a2^2+…+an^2)(b1^2+b2^2+…+bn^2)

这个定理可以用来计算两个向量之间的夹角余弦值,或者证明平方和不等式。

第十种题型:加权均值不等式

如果有n个数a1,a2,…,an和n个正实数λ1,λ2,…,λn,且λ1+λ2+…+λn=1,则根据加权均值不等式,我们有:

λ1a1+λ2a2+…+λnan ≥ (λ1a1^p+λ2a2^p+…+λnan^p)^(1/p)

这个定理可以用来计算不同权重的实数的平均值。

免费下载这份资料?立即下载

跪求高中数学题型归纳(湖南省)!

几种数学题型解法归纳

第一种:数列(等差数列与等比数列)

——北京十二中特级教师 刘文武

清华附中特级教师 张小英

数列是高中数学中的一个重要课题,也是数学竞赛中经常出现的问题。数列中最基本的是等差数列与等比数列。

所谓数列,就是按一定次序排列的一列数。如果数列{an}的第n项an与项数(下标)n之间的函数关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式。

从函数角度看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,…n})的函数当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式。

为了解数列竞赛题,首先要深刻理解并熟练掌握两类基本数列的定义、性质有关公式,把握它们之间的(同构)关系。

一、 等差数列

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列{an}的通项公式为:

an=a1+(n-1)d (1)

前n项和公式为:

(2)

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

在等差数列{an}中,等差中项:

且任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,且m+n=p+q,则有

am+an=ap+aq

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

二、 等比数列

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。

等比数列{an}的通项公式是:

an=a1·qn-1

前n项和公式是:

在等比数列中,等比中项:

且任意两项am,an的关系为an=am·qn-m

如果等比数列的公比q满足0<∣q∣<1,这个数列就叫做无穷递缩等比数列,它的各

项的和(又叫所有项的和)的公式为:

从等比数列的定义、通项公式、前n项和公式可以推出:

a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,则有:

ap·aq=am·an,

记πn=a1·a2…an,则有

π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则{Can}是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

重要的不仅是两类基本数列的定义、性质,公式;而且蕴含于求和过程当中的数学思想方法和数学智慧,也是极其珍贵的,诸如“倒排相加”(等差数列),“错位相减”(等比数列)。

数列中主要有两大类问题,一是求数列的通项公式,二是求数列的前n项和。

三、 范例

例1.设ap,aq,am,an是等比数列{an}中的第p、q、m、n项,若p+q=m+n,求证:apoaq=amoan

证明:设等比数列{an}的首项为a1,公比为q,则

ap=a1·qp-1,aq=a1·qq-1,am=a1·qm-1,an=a1·qn-1

所以:

ap·aq=a12qp+q-2,am·an=a12·qm+n-2,

故:ap·aq=am+an

说明:这个例题是等比数列的一个重要性质,它在解题中常常会用到。它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积,即:

a1+k·an-k=a1·an

对于等差数列,同样有:在等差数列{an}中,距离两端等这的两项之和等于首末两项之和。即:

a1+k+an-k=a1+an

例2.在等差数列{an}中,a4+a6+a8+a10+a12=120,则2a9-a10=

A.20 B.22 C.24 D28

解:由a4+a12=2a8,a6+a10 =2a8及已知或得

5a8=120,a8=24

而2a9-a10=2(a1+8d)-(a1+9d)=a1+7d=a8=24。

故选C

例3.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有( )

A.a1+a101>0 B. a2+a100<0 C.a3+a99=0 D.a51=51

[2000年北京春季高考理工类第(13)题]

解:显然,a1+a2+a3+…+a101

故a1+a101=0,从而a2+a100=a3+a99=a1+a101=0,选C

例4.设Sn为等差数列{an}的前n项之各,S9=18,an-4=30(n>9),Sn=336,则n为( )

A.16 B.21 C.9 D8

解:由于S9=9×a5=18,故a5=2,所以a5+an-4=a1+an=2+30=32,而,故n=21选B

例5.设等差数列{an}满足3a8=5a13,且a1>0,Sn为其前n项之和,则Sn(n∈N*)中最大的是( )。 (1995年全国高中联赛第1题)

(A)S10 (B)S11 (C)S20 (D)S21

解:∵3a8=5a13

∴3(a1+7d)=5(a1+12d)

令an≥0→n≤20;当n>20时an<0

∴S19=S20最大,选(C)

注:也可用二次函数求最值

例6.设等差数列的首项及公差均为非负整数,项数不少于3,且各项的和为972,则这样的数列共有( )

(A)2个 (B)3个 (C)4个 (D)5个

[1997年全国高中数学联赛第3题]

解:设等差数列首项为a,公差为d,则依题意有( )

即[2a+(n-1)d]on=2×972 (*)

因为n是不小于3的自然数,97为素数,故数n的值必为2×972的约数(因数),它只能是97,2×97,972,2×972四者之一。

若d>0,则d≥1由(*)式知2×972≥n(n-1)d≥n(n-1)故只可能有n=97,(*)式化为:a+48d=97,这时(*)有两组解:

若d=0,则(*)式化为:an=972,这时(*)也有两组解。

故符今题设条件的等差数列共4个,分别为:

49,50,51,…,145,(共97项)

1,3,5,…,193,(共97项)

97,97,97,…,97,(共97项)

1,1,1,…,1(共972=9409项)

故选(C)

例7.将正奇数集合{1,3,5,…}由小到大按第n组有(2n-1)个奇数进行分组:

{1}, {3,5,7},{9,11,13,15,17},…

(第一组) (第二组) (第三组)

则1991位于第 组中。

[1991年全国高中数学联赛第3题]

解:依题意,前n组中共有奇数

1+3+5+…+(2n-1)=n2个

而1991=2×996-1,它是第996个正奇数。

∵312=961<996<1024=322

∴1991应在第31+1=32组中。

故填32

例8.一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为 。

[1989年全国高中联赛试题第4题]

解:设该数为x,则其整数部分为[x],小数部分为x-[x],由已知得:x·(x-[x]=[x]2

其中[x]>0,0<x-[x]<1,解得:

由0<x-[x]<1知,

∴[x]=1,

故应填

例9.等比数列{an}的首项a1=1536,公比,用πn表示它的前n项之积,则πn(n∈N*)最大的是( )

(A)π9 (B)π11 (C)π12 (D)π13

[1996年全国高中数学联赛试题]

解:等比数列{an}的通项公式为,前n项和

因为

故π12最大。

选(C)

例10.设x≠y,且两数列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均为等差数列,那么= 。

[1988年全国高中联赛试题]

解:依题意,有y-x=4(a2-a1) ∴;

又y-x=3(b3-b2) ∴

例11.设x,y,Z是实数,3x,4y,5z成等比数列,且成等差数列,则的值是 。[1992年全国高中数学联赛试题]

解:因为3x,4y,5z成等比数列,所以有

3x·5z=(4y)2 即16y2=15xz ①

又∵成等差数列,所以有即②

将②代入①得:

∵x≠0,y≠0,z≠0

∴64xz=15(x2+2xz+z2)

∴15(x2+z2)=34xz

例12.已知集合M={x,xy,lg(xy)}及N={0,∣x∣,y}

并且M=N,那么的值等于 。

解:由M=N知M中应有一元素为0,任由lg(xy)有意义知xy≠0,从而x≠0,且y≠0,故只有lg(xy)=0, xy=1,M={x,1,0};若y=1,则x=1,M=N={0,1,1}与集合中元素互异性相连,故y≠1,从而∣x∣=1,x=±1;由x=1 y=1(含),由x=-1 y=-1,M=N={0,1,-1}

此时,

从而

注:数列x,x2,x3,…,x2001;以及

在x=y=-1的条件下都是周期为2的循环数列,S2n-1=-2,S2n=0,故2001并不可怕。

例13.已知数列{an}满足3an+1+an=4(n≥1)且a1=9,其前n项之和为Sn,则满足不等式( )

∣Sn-n-6∣<的最小整数n是( )

(A)5 (B)6 (C)7 (D)8

解:[1994年全国高中数学联赛试题]

由3an+1+an=4(n≥1)

3an+1-3=1-an

故数列{an-1}是以8为首项,以为公比的等比数列,所以

当n=7时满足要求,故选(C)

[注]:数列{an}既不是等差数列,也不是等比数列,而是由两个项数相等的等差数列:1,1,…,1和等比数列: 的对应项的和构成的数列,故其前n项和Sn可转化为相应的两个已知数列的和,这里,观察通项结构,利用化归思想把未知转化为已知。

例14.设数列{an}的前n项和Sn=2an-1(n=1,2,…),数列{bn}满足b1=3,bk+1=ak+bk(k=1,2,…)求数列{bn}的前n项和。

[1996年全国高中数学联赛第二试第一题]

解:由Sn=2an-1,令n=1,得S1=a1=2a1-1,∴a1=1 ①

又Sn=2an-1 ②

Sn-1=2an-1-1 ③

②-③得:Sn-sn-1=2an-2an-1

∴an=2an-2an-1

∴数列{an}是以a1=1为首项,以q=2为公比的等比数列,故an=2n-1 ④

由⑤

∴以上诸式相加,得

注:本题综合应用了a1-s1,a3=Sn-Sn-1(n≥2)以及等差数列、等比数列求和公式以及叠加等方法,从基本知识出发,解决了较为复杂的问题。选准突破口,发现化归途径,源于对基础知识的深刻理念及其联系的把握。

例15.n2个正数排成n行n列

a11,a12,a13,a14,…,a1n

a21,a22,a23,a24,…,a2n

a31,a32,a33,a34,…,a3n

a41,a42,a43,a44,…,a4n

an1,an2,an3,an4,…,ann。

其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等。已知

[1990年全国高中数学联赛第一试第四题]

解:设第一行数列公差为d,纵行各数列公比为q,则原n行n列数表为:

故有:

②÷③得,代入①、②得④

因为表中均为正数,故q>0,∴,从而,因此,对于任意1≤k≤n,有

记S=a11+a22+a33+…+ann ⑤

⑤-⑥得:

评注:本题中求和,实为等差数列an=n与等比数列的对应项乘积构成的新数列的前n项的和,将⑤式两边同乘以公比,再错项相减,化归为等比数列求各。这种方法本是求等比数列前n项和的基本方法,它在解决此类问题中非常有用,应予掌握。课本P137复习参考题三B组题第6题为:求和:S=1+2x+3x2+…+nxn-1;2003年北京高考理工类第(16)题:已知数列{an}是等差数列,且a1=2,a1+a2+a3=12,(I)求数列{an}的通项公式;(II)令bn=an·xn(x∈R),求数列{bn}的前n项和公式。都贯穿了“错项相减”方法的应用。

第二种:指数函数与对数函数 ————北京十二中 刘文武 指数、对数以及指数函数与对数函数,是高中代数非常重要的内容。无论在高考及数学竞赛中,都具有重要地位。熟练掌握指数对数概念及其运算性质,熟练掌握指数函数与对数函数这一对反函数的性质、图象及其相互关系,对学习好高中函数知识,意义重大。 一、 指数概念与对数概念: 指数的概念是由乘方概念推广而来的。相同因数相乘a·a……a(n个)=an导出乘方,这里的n为正整数。从初中开始,首先将n推广为全体整数;然后把乘方、开方统一起来,推广为有理指数;最后,在实数范围内建立起指数概念。 欧拉指出:“对数源出于指数”。一般地,如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b叫做以a为底N的对数,记作:logaN=b 其中a叫做对数的底数,N叫做真数。 ab=N与b=logaN是一对等价的式子,这里a是给定的不等于1的正常数。当给出b求N时,是指数运算,当给出N求b时,是对数运算。指数运算与对数运算互逆的运算。 二、指数运算与对数运算的性质 1.指数运算性质主要有3条: ax·ay=ax+y,(ax)y=axy,(ab)x=ax·bx(a>0,a≠1,b>0,b≠1) 2.对数运算法则(性质)也有3条: (1)loga(MN)=logaM+logaN (2)logaM/N=logaM-logaN (3)logaMn=nlogaM(n∈R) (a>0,a≠1,M>0,N>0) 3.指数运算与对数运算的关系: X=alogax;mlogan=nlogam 4.负数和零没有对数;1的对数是零,即 loga1=0;底的对数是1,即logaa=1 5.对数换底公式及其推论: 换底公式:logaN=logbN/logba 推论1:logamNn=(n/m)logaN 推论2: 三、指数函数与对数函数 函数y=ax(a>0,且a≠1)叫做指数函数。它的基本情况是: (1)定义域为全体实数(-∞,+∞) (2)值域为正实数(0,+∞),从而函数没有最大值与最小值,有下界,y>0 (3)对应关系为一一映射,从而存在反函数--对数函数。 (4)单调性是:当a>1时为增函数;当00,a≠1), f(x+y)=f(x)·f(y),f(x-y)=f(x)/f(y) 函数y=logax(a>0,且a≠1)叫做对数函数,它的基本情况是: (1)定义域为正实数(0,+∞) (2)值域为全体实数(-∞,+∞) (3)对应关系为一一映射,因而有反函数——指数函数。 (4)单调性是:当a>1时是增函数,当00,a≠1), f(x·y)=f(x)+f(y), f(x/y)=f(x)-f(y) 例1.若f(x)=(ax/(ax+√a)),求f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001) 分析:和式中共有1000项,显然逐项相加是不可取的。需找出f(x)的结构特征,发现规律,注意到1/1001+1000/1001=2/1001+999/1001=3/1001+998/1001=…=1, 而f(x)+f(1-x)=(ax/(ax+√a))+(a1-x/(a1-x+√a))=(ax/(ax+√a))+(a/(a+ax·√a))=(ax/(ax+√a))+((√a)/(ax+√a))=((ax+√a)/(ax+√a))=1规律找到了,这启示我们将和式配对结合后再相加: 原式=[f(1/1001)+f(1000/1001)]+[f(2/1001)+f(999/1001)]+…+[f(500/1001)+f(501/1001)]=(1+1+…+1)5000个=500 说明:观察比较,发现规律f(x)+f(1-x)=1是本例突破口。 (1)取a=4就是1986年的高中数学联赛填空题:设f(x)=(4x/(4x+2)),那么和式f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001)的值= 。 (2)上题中取a=9,则f(x)=(9x/(9x+3)),和式值不变也可改变和式为求f(1/n)+f(2/n)+f(3/n)+…+f((n-1)/n). (3)设f(x)=(1/(2x+√2)),利用课本中推导等差数列前n项和的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为 。这就是2003年春季上海高考数学第12题。 例2.5log25等于:( ) (A)1/2 (B)(1/5)10log25 (C)10log45 (D)10log52 解:∵5log25=(10/2)log25=(10log25)/(2log25)=(1/5)×10log25 ∴选(B) 说明:这里用到了对数恒等式:alogaN=N(a>0,a≠1,N>0) 这是北京市1997年高中一年级数学竞赛试题。 例3.计算 解法1:先运用复合二次根式化简的配方法对真数作变形。 解法2:利用算术根基本性质对真数作变形,有 说明:乘法公式的恰当运用化难为易,化繁为简。 例4.试比较(122002+1)/(122003+1)与(122003+1)/(122004+1)的大小。 解:对于两个正数的大小,作商与1比较是常用的方法,记122003=a>0,则有 ((122002+1)/(122003+1))÷((122003+1)/(122004+1))=((a/12)+1)/(a+1)·((12a+1)/(a+1))=((a+12)(12a+1))/(12(a+1)2)=((12a2+145a+12)/(12a2+24a+12))>1 故得:((122002+1)/(122003+1))>((122003+1)/(122004+1)) 例5.已知(a,b为实数)且f(lglog310)=5,则f(lglg3)的值是( ) (A)-5 (B)-3 (C)3 (D)随a,b的取值而定 解:设lglog310=t,则lglg3=lg(1/log310)=-lglog310=-t 而f(t)+f(-t)= ∴f(-t)=8-f(t)=8-5=3 说明:由对数换底公式可推出logab·logba=(lgb/lga)·(lga/lgb)=1,即logab=(1/logba),因而lglog310与lglg3是一对相反数。设中的部分,则g(x)为奇函数,g(t)+g(-t)=0。这种整体处理的思想巧用了奇函数性质使问题得解,关键在于细致观察函数式结构特征及对数的恒等变形。

第三种:二次函数 二次函数是最简单的非线性函数之一,而且有着丰富内涵。在中学数学数材中,对二次函数和二次方程,二次三项式及二次不等式以及它们的基本性质,都有深入和反复的讨论与练习。它对近代数学,乃至现代数学,影响深远,为历年来高考数学考试的一项重点考查内容,历久不衰,以它为核心内容的重点试题,也年年有所变化,不仅如此,在全国及各地的高中数学竞赛中,有关二次函数的内容也是非常重要的命题对象。因此,必须透彻熟练地掌握二次函数的基本性质。 学习二次函数的关键是抓住顶点(-b/2a,(4ac-b2)/4a),顶点的由来体现了配方法(y=ax2+bx+c=a(x+b/2a)2+(4ac-b2)/4a);图象的平移归结为顶点的平移(y=ax2→y=a(x-h)2+k);函数的对称性(对称轴x=-b/2a,f (-b/2a+x)=f (-b/2a-x),x∈R),单调区间(-∞,-b/2a),[-b/2a,+∞]、极值((4ac-b2)/4a),判别式(Δb2-4ac)与X轴的位置关系(相交、相切、相离)等,全都与顶点有关。 一、“四个二次型”概述 在河南教育出版社出版的《漫谈ax2+bx+c》一书中(作者翟连林等),有如下一个“框图”: (一元)二次函数 y=ax2+bx+c (a≠0) → a=0 → (一元)一次函数 y=bx+c(b≠0) ↑ ↑ ↑ ↑ (一元)二次三项式 ax2+bx+c(a≠0) → a=0 → 一次二项式 bx+c(b≠0) ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 一元二次方程 ax2+bx+c=0(a≠0) → a=0 → 一元一次方程 bx+c=0(b≠0) ↓ ↓ ↓ 一元二次不等式 ax2+bx+c>0或 ax2+bx+c<0(a≠0) → a=0 → 一元一次不等式 bx+c>0或 bx+c<0(b≠0) 观察这个框图,就会发现:在a≠0的条件下,从二次三项式出发,就可派生出一元二次函数,一元二次方程和一元二次不等式来。故将它们合称为“四个二次型”。其中二次三项式ax2+bx+c(a≠0)像一颗心脏一样,支配着整个“四个二次型”的运动脉络。而二次函数y=ax2+bx+c(a≠0),犹如“四个二次型”的首脑或统帅:它的定义域即自变量X的取值范围是全体实数,即n∈R;它的解析式f(x)即是二次三项式ax2+bx+c(a≠0);若y=0,即ax2+bx+c=0(a≠0),就是初中重点研究的一元二次方程;若y>0或y<0,即ax2+bx+c>0或ax2+bx+c<0(a≠0),就是高中一年级重点研究的一元二次不等式,它总揽全局,是“四个二次型”的灵魂。讨论零值的一元二次函数即一元二次方程是研究“四个二次型”的关键所在,它直接影响着两大主干:一元二次方程和一元二次不等式的求解。一元二次方程的根可看作二次函数的零点;一元二次不等式的解集可看作二次函数的正、负值区间。心脏、头脑、关键、主干、一句话,“四个二次型”联系密切,把握它们的相互联系、相互转化、相互利用,便于寻求规律,灵活运用,使学习事半功倍。 二、二次函数的解析式 上面提到,“四个二次型”的心脏是二次三项式:二次函数是通过其解析式来定义的(要特别注意二次项系数a≠0);二次函数的性质是通过其解析式来研究的。因此,掌握二次函数首先要会求解析式,进而才能用解析式去解决更多的问题。 Y=ax2+bx+c(a≠0)中有三个字母系数a、b、c,确定二次函数的解析式就是确定字母a、b、c的取值。三个未知数的确定需要3个独立的条件,其方法是待定系数法,依靠的是方程思想及解方程组。 二次函数有四种待定形式: 1.标准式(定义式):f(x)=ax2+bx+c.(a≠0) 2.顶点式: f(x)=a(x-h)2+k .(a≠0) 3.两根式(零点式):f(x)=a(x-x1)(x-x2). (a≠0) 4.三点式:(见罗增儒《高中数学竞赛辅导》) 过三点A(x1,f (x1))、B(x2,f (x2))、C(x3,f (x3))的二次函数可设为 f (x)=a1(x-x2)(x-x3)+a2(x-x1)(x-x3)+a3(x-x1)(x-x2)把ABC坐标依次代入,即令x=x1,x2,x3,得 f (x1)=a1(x1-x2)(x1-x3), f (x2)=a2(x2-x1)(x2-x3), f (x3)=a3(x3-x1)(x3-x2) 解之,得:a1=f (x1)/ (x1-x2)(x1-x3),a2=f (x2)/ (x2-x1)(x2-x3),a3=f (x3)/ (x3-x1)(x3-x2) 从而得二次函数的三点式为:f(x)=[f(x1)/(x1-x2)](x1-x3)(x-x2)(x-x3)+[f(x2)/ (x2-x1)(x2-x3)](x-x1)(x-x3)+[f(x3)/(x3-x1)(x3-x2)](x-x1)(x-x2)根据题目所给的不同条件,灵活地选用上述四种形式求解二次函数解析式,将会得心应手。 高考的重点一般在 常用函数 常用双曲线+直线 数列 三角

二项式定理 立体几何 排列组合加概率等其他一些知识是比较小的部分

重要的是基础 高一的话上课的基本解题方法一定要熟练掌握 并且不能忘记 到了高三再练习就很麻烦了 还有不要忽视概念 往往很多题目是考概念的

难度方面要视文理科而定 但是70%题目肯定用基本知识就能做的 20%需要结合各种知识并且动脑 真正有难度的题目只有10%

如果数学是弱项就一定要重视知识的反复整理和练习 不一定要以制做题 而是要把做错的题目和典型的题目反复练习 基本的方法和解题思路是很重要的

还有就是 不能放弃 数学学科要有明显提高一定有一个过程 一般是半个学期到一个学期的时间 如果一旦放弃就功亏一篑了

高中数学主要是代数,三角,几何三个部分.内容相互独立但是解题时常互相提供方法,等高三你就知道了.

必修的:

代数部分有:

1 集合与简易逻辑.其实就是集合,命题,充要条件三点,很浅显高考也不会单出这类的题

2 函数.先是对于函数的描述,有映射定义域对应法则植域;然后是性质,三个,单调性奇偶性周期性;最后是指数函数还有对数函数,是两个基本的函数,要研究他们的性质和图象

3 三角.三角其实就是个工具,比较烦人,公式背下来再多练练用的滚瓜烂熟就行了

4 几何.也就是平面解析几何,用坐标法定量的研究平面几何问题.学几个定义,然后是直线的方程,圆的方程,圆锥曲线方程.

哎对不起啊现在我也高三总复习了一说就随口说了这么多,其实你不用知道那么多,三年呢自然而然就都学了.

现在建议你最好能对数学感兴趣,自己暗示自己一下;上课认真听讲,把知识记牢,免得以后补很麻烦;学会总结,抓住知识之间的联系

数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:

一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

选我!!!

高一数学函数题型及解题技巧有哪些?

高中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

K12资源实时更新

来自:百度网盘

提取码: 1234

复制提取码跳转

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。 高一数学函数题型及解题技巧有:代入法、单调性法、待定系数法、换元法、构造方程法。

一、代入法

代入法主要有两种方式,一种是出现在选择题中,就是直接把题目的答案选项带入到题目中进行验证,这也是相对比较快的一种办法,另外一种就是求已知函数关于某点或者某条直线的对称函数,带入函数的表达公式或者函数的性质,直接性的求解题目,通常适用于填空题,难度也也不会太大。

高中函数题型方法全归纳

高一的函数题型有函数的定义与性质、函数的图像与性质、函数的运算与复合、函数方程与不等式等。解题技巧有仔细读题、分析函数的定义和性质、利用图像来推断函数的性质、运用数学方法进行计算和推导、注意解题的过程和结果的合理性等。

高一的函数题型:

1.函数的定义与性质

要求根据给定的函数定义和性质,求函数的解析式、函数的定义域、值域、最值等。解题技巧是仔细分析函数的定义和性质,并根据这些信息进行推导和计算。

2.函数的图像与性质

要求根据函数的图像来确定函数的性质,如函数的单调性、奇偶性、周期性等。解题技巧是观察函数的图像,并根据图像上的特点来判断函数的性质。

3.函数的运算与复合

高一均值不等式题型归纳

介绍均值不等式

均值不等式是数学中一种重要的不等式,它可以被分为10种不同类型的题目。在本篇文章中,我们将会逐一讨论这10种题目类型。

第一种题型:两个数的均值不小于它们的几何平均数

如果有两个数a和b,它们的简单平均数为(a+b)/2,几何平均数为sqrt(ab),则根据均值不等式,我们有:

(a+b)/2 ≥ sqrt(ab)

这个定理可以用来证明不等式,或者得出不要具体数值的范围。

第二种题型:n个数的平均数不小于它们的几何平均数

如果有n个数a1,a2,…,an,则它们的平均数为(a1+a2+…+an)/n,它们的几何平均数为(a1×a2×…×an)^(1/n),则根据均值不等式,我们有:

(a1+a2+…+an)/n ≥ (a1×a2×…×an)^(1/n)

这个定理可以用来求取包含多个变量的式子的范围。

第三种题型:n个数的平均值不小于它们的最小值

如果有n个数a1,a2,…,an,则它们的平均数为(a1+a2+…+an)/n,最小值为min(a1,a2,…,an),则根据均值不等式,我们有:

(a1+a2+…+an)/n ≥ min(a1,a2,…,an)

这个定理可以用来在已知最小值的情况下计算平均值。

第四种题型:n个数的平均值不小于它们的中位数

如果有n个数a1,a2,…,an,则它们的平均数为(a1+a2+…+an)/n,中位数为median(a1,a2,…,an),则根据均值不等式,我们有:

(a1+a2+…+an)/n ≥ median(a1,a2,…,an)

这个定理可以用来在已知中位数的情况下计算平均值。

第五种题型:n个正数的插值不等式

如果有n个正数a1,a2,…,an和n个正实数λ1,λ2,…,λn,且λ1+λ2+…+λn=1,则根据插值不等式,我们有:

λ1a1+λ2a2+…+λnan ≥ a1^(λ1)a2^(λ2)…an^(λn)

这个定理可以用来计算正数的加权平均值。

第六种题型:两个一次函数的均值不等式

如果有两个一次函数f(x)=ax+b和g(x)=cx+d,则它们的平均值为(f(x)+g(x))/2,根据均值不等式,我们有:

(f(x)+g(x))/2 ≥ sqrt(f(x)g(x))

这个定理可以用来计算两个一次函数的范围。

第七种题型:多个一次函数的均值不等式

如果有n个一次函数f1(x),f2(x),…,fn(x),则它们的平均值为(f1(x)+f2(x)+…+fn(x))/n,根据均值不等式,我们有:

(f1(x)+f2(x)+…+fn(x))/n ≥ sqrt(n∏fi(x))

这个定理可以用来计算多个一次函数的范围。

第八种题型:拉格朗日平均值不等式

如果有n个数a1,a2,…,an,且它们的平均数为m,则根据拉格朗日平均值不等式,我们有:

(a1-a2)^2+(a2-a3)^2+…+(an-1-an)^2 ≥ 0

这个定理可以用来证明均值不等式,或者得出特定条件下的确切范围。

第九种题型:柯西-施瓦茨不等式

如果有n个实数a1,a2,…,an和n个实数b1,b2,…,bn,则根据柯西-施瓦茨不等式,我们有:

(a1b1+a2b2+…+anbn)^2 ≤ (a1^2+a2^2+…+an^2)(b1^2+b2^2+…+bn^2)

这个定理可以用来计算两个向量之间的夹角余弦值,或者证明平方和不等式。

第十种题型:加权均值不等式

如果有n个数a1,a2,…,an和n个正实数λ1,λ2,…,λn,且λ1+λ2+…+λn=1,则根据加权均值不等式,我们有:

λ1a1+λ2a2+…+λnan ≥ (λ1a1^p+λ2a2^p+…+λnan^p)^(1/p)

这个定理可以用来计算不同权重的实数的平均值。

高一数学题型归纳总结(高中函数题型方法全归纳)