光的色散和折射的区别(彩虹的原理是光的什么现象)
光的色散和折射的区别(彩虹的原理是光的什么现象)

2.光的色散与光的折射一样吗?他们之间有什么关系

光的色散与折射不一样

折射:筷子在水中“弯”了 这种叫做光的折射

色散:彩虹 :光透过三棱镜后射在光屏上有七种色光(把白光或太阳光分解成七色光)即为光的色散

00 这两种现象是有关联的,光的色散的本质是光的折射,这是由于三棱镜对不同的色光的折射率是不同的!所以就能将七色光分开!

物理牛人问物理,找出光的色散、散射、折射的区别和联系,并有具体事例...

光的色散

色散:复色光分解为单色光而形成光谱的现象叫做光的色散。色散可以利用棱镜或光栅等作为“色散系统”的仪器来实现。复色光进入棱镜后,由于它对各种频率的光具有不同折射率,各种色光的传播方向有不同程度的偏折,因而在离开棱镜时就各自分散,形成光谱。

复色光分解为单色光而形成光谱的现象.让一束白光射到玻璃棱镜上,光线经过棱镜折射以后就在另一侧面的白纸屏上形成一条彩色的光带,其颜色的排列是靠近棱镜顶角端是红色,靠近底边的一端是紫色,中间依次是橙黄绿蓝靛,这样的光带叫光谱.光谱中每一种色光不能再分解出其他色光,称它为单色光.由单色光混合而成的光叫复色光.自然界中的太阳光、白炽电灯和日光灯发出的光都是复色光.在光照到物体上时,一部分光被物体反射,一部分光被物体吸收。如果物体是透明的,还有一部分透过物体。不同物体,对不同颜色的反射、吸收和透过的情况不同,因此呈现不同的色彩。

光波都有一定的频率,光的颜色是由光波的频率决定的,在可见光区域,红光频率最小,紫光的频率最大,各种频率的光在真空中传播的速度都相同,等于.但是不同频率的单色光,在介质中传播时由于受到介质的作用,传播速度都比在真空中的速度小,并且速度的大小互不相同.红光速度大,紫光的传播速度小,因此介质对红光的折射率小,对紫光的折率大.当不同色光以相同的入射角射到三棱镜上,红光发生的偏折最少,它在光谱中处在靠近顶角的一端.紫光的频率大,在介质中的折射率大,在光谱中也就排列在最靠近棱镜底边的一端.

光的散射

(1)定义或解释

光束通过不均匀媒质时,部分光束将偏离原来方向而分散传播,从侧向也可以看到光的现象,叫做光的散射。

(2)说明

①引起光散射的原因是由于媒质中存在着其他物质的微粒,或者由于媒质本身密度的不均匀性(即密度涨落)。

②一般由光的散射的原因不同而将光的散射分为两类:

a.廷德尔散射。

颗粒浑浊媒质(颗粒线度和光的波长差不多)的散射,散射光的强度和入射光的波长的关系不明显,散射光的波长和入射光的波长相同。

b.分子散射。

光通过纯净媒质时,由于构成该媒质的分子密度涨落而被散射的现象。分子散射的光强度和入射光的波长有关,但散射光的波长仍和入射光相同。

光通过不均匀介质时部分光偏离原方向传播的现象。偏离原方向的光称散射光,散射光一般为偏振光(线偏振光或部分偏振光,见光的偏振)。散射光的波长不发生变化的有廷德耳散射、分子散射等,散射光波长发生改变的有拉曼散射、布里渊散射和康普顿散射等。廷德耳散射由英国物理学家J.廷德耳首先研究,是由均匀介质中的悬浮粒子引起的散射,如空气中的烟、雾、尘埃,以及浮浊液、胶体等引起的散射均属此类。真溶液不会产生廷德耳散射,故化学中常根据有无廷德耳散射来区别胶体和真溶液。分子散射是由于物质分子的热运动造成的密度涨落而引起的散射,例如纯净气体或液体中发生的微弱散射。

介质中存在大量不均匀小区域是产生光散射的原因,有光入射时,每个小区域成为散射中心,向四面八方发出同频率的次波,这些次波间无固定相位关系,它们在某方向上的非相干叠加形成了该方向上的散射光。J.W.S.瑞利研究了线度比波长要小的微粒所引起的散射,并于1871年提出了瑞利散射定律:特定方向上的散射光强度与波长λ的四次方成反比;一定波长的散射光强与(1+cosθ)成正比,θ为散射光与入射光间的夹角,称散射角。凡遵守上述规律的散射称为瑞利散射。根据瑞利散射定律可解释天空和大海的蔚蓝色和夕阳的橙红色。

对线度比波长大的微粒,散射规律不再遵守瑞利定律,散射光强与微粒大小和形状有复杂的关系。G.米和P.J.W.德拜分别于1908年和1909年以球形粒子为模型详细计算了对电磁波的散射,米氏散射理论表明,只有当球形粒子的半径a<0.3λ/2π时,瑞利的散射规律才是正确的,a较大时,散射光强与波长的关系就不十分明显了。因此,用白光照射由大颗粒组成的散射物质时(如天空的云等),散射光仍为白光。气体液化时,在临界状态附近,密度涨落的微小区域变得比光波波长要大,类似于大粒子,由大粒子产生的强烈散射使原来透明的物质变混浊,称为临界乳光。

波长发生改变的散射与构成物质的原子或分子本身的微观结构有关,通过对散射光谱的研究可了解原子或分子的结构特性。

波长较短的光容易被散射,波长较长的光不容易被散射

光的折射

定义:光从一种透明均匀物质斜射到另一种透明物质中时,传播方向发生改变的现象叫做光的折射。

折射规律:传播速度越快,角越大。光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光则进入到另一种介质中,由于光在在两种不同的物质里传播速度不同,故在两种介质的交界处传播方向发生变化,这就是光的折射。

光的折射规律:光从空气斜射入水或其他介质中时,折射光线与入射光线、法线在同一平面上,折射光线和入射光线分居法线两侧;折射角小于入射角;入射角增大时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不变,在折射中光路可逆。 你想要多专业的??

色散:

波在媒质中的速度(或折射率n=c/v)随频率而变的现象。

对于光 (也是电磁波)

频率不同时,颜色不一样,折射率也不同,

所以表现出 白光(复色光)分解为彩色光谱

散射

实际上,散射就相当于碰撞,改变原来粒子的运动方向。

对于光

光束通过不均匀媒质时,部分光束将偏离原来方向而分散传播,从侧向也可以看到光的现象,叫做光的散射。

折射

由于在不同折射率的介质中,波的传播速度不同,造成波的运动方向也不同。

对于光

光从一种透明均匀物质斜射到另一种透明物质中时,传播方向发生改变的现象叫做光的折射。

彩虹的原理是光的什么现象

造成彩虹的光学原理彩虹是因为阳光射到空中接近圆型的小水滴,造成色散及反射而成.阳光射入水滴时会同时以不同角度入射,在水滴内亦以不同的角度反射.当中以40至42度的反射最为强烈,造成我们所见到的彩虹.造成这种反射时,阳光进入水滴,先折射一次,然后在水滴的背面反射,最后离开水滴时再折射一次.因为水对光有色散的作用,不同波长的光的折射率有所不同,蓝光的折射角度比红光大.由于光在水滴内被反射,所以观察者看见的光谱是倒过来,红光在最上方,其他颜色在下.

双重彩虹,上方为霓,下方为虹很多时候会见到两条彩虹同时出现,在平常的彩虹外边出现同心,但较暗的副虹(又称霓).副虹是阳光在水滴中经两次反射而成.两次反射最强烈的反射角出现在50°至53°,所以副虹位置在主虹之外.因为有两次的反射,副虹的颜色次序跟主虹反转,外侧为蓝色,内侧为红色.副虹其实一定跟随主虹存在,只是因为它的光线强度较低,所以有时不被肉眼察觉而已(参看).

彩虹其实并非出现在半空中的特定位置.它是观察者看见的一种光学现象,彩虹看起来的所在位置,会随著观察者而改变.当观察者看到彩虹时,它的位置必定是在太阳的相反方向.彩虹的拱以内的中央,其实是被水滴反射,放大了的太阳影像.所以彩虹以内的天空比彩虹以外的要亮.彩虹拱形的正中心位置,刚好是观察者头部影子的方向,虹的本身则在观察者头部的影子与眼睛一线以上40°至42°的位置.因此当太阳在空中高于42度时,彩虹的位置将在地平线以下而不可见.这亦是为甚么彩虹很少在中午出现的原因.

光的色散原理

色散的原理是光的折射。

色散是复色光分解为单色光而形成光谱的现象。色散可以利用棱镜或光栅等作用为色散系统的仪器来实现。如复色光进入棱镜后,由于它对各种频率的光具有不同折射率,各种色光的传播方向有程度的偏折,因而在离开棱镜时就各自分散,形成光谱。

免费下载这份资料?立即下载

2.光的色散与光的折射一样吗?他们之间有什么关系

光的色散与折射不一样

折射:筷子在水中“弯”了 这种叫做光的折射

色散:彩虹 :光透过三棱镜后射在光屏上有七种色光(把白光或太阳光分解成七色光)即为光的色散

00 这两种现象是有关联的,光的色散的本质是光的折射,这是由于三棱镜对不同的色光的折射率是不同的!所以就能将七色光分开!

物理牛人问物理,找出光的色散、散射、折射的区别和联系,并有具体事例...

光的色散

色散:复色光分解为单色光而形成光谱的现象叫做光的色散。色散可以利用棱镜或光栅等作为“色散系统”的仪器来实现。复色光进入棱镜后,由于它对各种频率的光具有不同折射率,各种色光的传播方向有不同程度的偏折,因而在离开棱镜时就各自分散,形成光谱。

复色光分解为单色光而形成光谱的现象.让一束白光射到玻璃棱镜上,光线经过棱镜折射以后就在另一侧面的白纸屏上形成一条彩色的光带,其颜色的排列是靠近棱镜顶角端是红色,靠近底边的一端是紫色,中间依次是橙黄绿蓝靛,这样的光带叫光谱.光谱中每一种色光不能再分解出其他色光,称它为单色光.由单色光混合而成的光叫复色光.自然界中的太阳光、白炽电灯和日光灯发出的光都是复色光.在光照到物体上时,一部分光被物体反射,一部分光被物体吸收。如果物体是透明的,还有一部分透过物体。不同物体,对不同颜色的反射、吸收和透过的情况不同,因此呈现不同的色彩。

光波都有一定的频率,光的颜色是由光波的频率决定的,在可见光区域,红光频率最小,紫光的频率最大,各种频率的光在真空中传播的速度都相同,等于.但是不同频率的单色光,在介质中传播时由于受到介质的作用,传播速度都比在真空中的速度小,并且速度的大小互不相同.红光速度大,紫光的传播速度小,因此介质对红光的折射率小,对紫光的折率大.当不同色光以相同的入射角射到三棱镜上,红光发生的偏折最少,它在光谱中处在靠近顶角的一端.紫光的频率大,在介质中的折射率大,在光谱中也就排列在最靠近棱镜底边的一端.

光的散射

(1)定义或解释

光束通过不均匀媒质时,部分光束将偏离原来方向而分散传播,从侧向也可以看到光的现象,叫做光的散射。

(2)说明

①引起光散射的原因是由于媒质中存在着其他物质的微粒,或者由于媒质本身密度的不均匀性(即密度涨落)。

②一般由光的散射的原因不同而将光的散射分为两类:

a.廷德尔散射。

颗粒浑浊媒质(颗粒线度和光的波长差不多)的散射,散射光的强度和入射光的波长的关系不明显,散射光的波长和入射光的波长相同。

b.分子散射。

光通过纯净媒质时,由于构成该媒质的分子密度涨落而被散射的现象。分子散射的光强度和入射光的波长有关,但散射光的波长仍和入射光相同。

光通过不均匀介质时部分光偏离原方向传播的现象。偏离原方向的光称散射光,散射光一般为偏振光(线偏振光或部分偏振光,见光的偏振)。散射光的波长不发生变化的有廷德耳散射、分子散射等,散射光波长发生改变的有拉曼散射、布里渊散射和康普顿散射等。廷德耳散射由英国物理学家J.廷德耳首先研究,是由均匀介质中的悬浮粒子引起的散射,如空气中的烟、雾、尘埃,以及浮浊液、胶体等引起的散射均属此类。真溶液不会产生廷德耳散射,故化学中常根据有无廷德耳散射来区别胶体和真溶液。分子散射是由于物质分子的热运动造成的密度涨落而引起的散射,例如纯净气体或液体中发生的微弱散射。

介质中存在大量不均匀小区域是产生光散射的原因,有光入射时,每个小区域成为散射中心,向四面八方发出同频率的次波,这些次波间无固定相位关系,它们在某方向上的非相干叠加形成了该方向上的散射光。J.W.S.瑞利研究了线度比波长要小的微粒所引起的散射,并于1871年提出了瑞利散射定律:特定方向上的散射光强度与波长λ的四次方成反比;一定波长的散射光强与(1+cosθ)成正比,θ为散射光与入射光间的夹角,称散射角。凡遵守上述规律的散射称为瑞利散射。根据瑞利散射定律可解释天空和大海的蔚蓝色和夕阳的橙红色。

对线度比波长大的微粒,散射规律不再遵守瑞利定律,散射光强与微粒大小和形状有复杂的关系。G.米和P.J.W.德拜分别于1908年和1909年以球形粒子为模型详细计算了对电磁波的散射,米氏散射理论表明,只有当球形粒子的半径a<0.3λ/2π时,瑞利的散射规律才是正确的,a较大时,散射光强与波长的关系就不十分明显了。因此,用白光照射由大颗粒组成的散射物质时(如天空的云等),散射光仍为白光。气体液化时,在临界状态附近,密度涨落的微小区域变得比光波波长要大,类似于大粒子,由大粒子产生的强烈散射使原来透明的物质变混浊,称为临界乳光。

波长发生改变的散射与构成物质的原子或分子本身的微观结构有关,通过对散射光谱的研究可了解原子或分子的结构特性。

波长较短的光容易被散射,波长较长的光不容易被散射

光的折射

定义:光从一种透明均匀物质斜射到另一种透明物质中时,传播方向发生改变的现象叫做光的折射。

折射规律:传播速度越快,角越大。光的折射与光的反射一样都是发生在两种介质的交界处,只是反射光返回原介质中,而折射光则进入到另一种介质中,由于光在在两种不同的物质里传播速度不同,故在两种介质的交界处传播方向发生变化,这就是光的折射。

光的折射规律:光从空气斜射入水或其他介质中时,折射光线与入射光线、法线在同一平面上,折射光线和入射光线分居法线两侧;折射角小于入射角;入射角增大时,折射角也随着增大;当光线垂直射向介质表面时,传播方向不变,在折射中光路可逆。 你想要多专业的??

色散:

波在媒质中的速度(或折射率n=c/v)随频率而变的现象。

对于光 (也是电磁波)

频率不同时,颜色不一样,折射率也不同,

所以表现出 白光(复色光)分解为彩色光谱

散射

实际上,散射就相当于碰撞,改变原来粒子的运动方向。

对于光

光束通过不均匀媒质时,部分光束将偏离原来方向而分散传播,从侧向也可以看到光的现象,叫做光的散射。

折射

由于在不同折射率的介质中,波的传播速度不同,造成波的运动方向也不同。

对于光

光从一种透明均匀物质斜射到另一种透明物质中时,传播方向发生改变的现象叫做光的折射。

彩虹的原理是光的什么现象

造成彩虹的光学原理彩虹是因为阳光射到空中接近圆型的小水滴,造成色散及反射而成.阳光射入水滴时会同时以不同角度入射,在水滴内亦以不同的角度反射.当中以40至42度的反射最为强烈,造成我们所见到的彩虹.造成这种反射时,阳光进入水滴,先折射一次,然后在水滴的背面反射,最后离开水滴时再折射一次.因为水对光有色散的作用,不同波长的光的折射率有所不同,蓝光的折射角度比红光大.由于光在水滴内被反射,所以观察者看见的光谱是倒过来,红光在最上方,其他颜色在下.

双重彩虹,上方为霓,下方为虹很多时候会见到两条彩虹同时出现,在平常的彩虹外边出现同心,但较暗的副虹(又称霓).副虹是阳光在水滴中经两次反射而成.两次反射最强烈的反射角出现在50°至53°,所以副虹位置在主虹之外.因为有两次的反射,副虹的颜色次序跟主虹反转,外侧为蓝色,内侧为红色.副虹其实一定跟随主虹存在,只是因为它的光线强度较低,所以有时不被肉眼察觉而已(参看).

彩虹其实并非出现在半空中的特定位置.它是观察者看见的一种光学现象,彩虹看起来的所在位置,会随著观察者而改变.当观察者看到彩虹时,它的位置必定是在太阳的相反方向.彩虹的拱以内的中央,其实是被水滴反射,放大了的太阳影像.所以彩虹以内的天空比彩虹以外的要亮.彩虹拱形的正中心位置,刚好是观察者头部影子的方向,虹的本身则在观察者头部的影子与眼睛一线以上40°至42°的位置.因此当太阳在空中高于42度时,彩虹的位置将在地平线以下而不可见.这亦是为甚么彩虹很少在中午出现的原因.

光的色散原理

色散的原理是光的折射。

色散是复色光分解为单色光而形成光谱的现象。色散可以利用棱镜或光栅等作用为色散系统的仪器来实现。如复色光进入棱镜后,由于它对各种频率的光具有不同折射率,各种色光的传播方向有程度的偏折,因而在离开棱镜时就各自分散,形成光谱。

光的色散和折射的区别(彩虹的原理是光的什么现象)