初中数学竞赛题(初中数学竞赛题100道八年级)
初中数学竞赛题(初中数学竞赛题100道八年级)

初三数学竞赛题要求有详细过程,用初中方法解答谢谢

1、假设A在第一象限。

解方程组y=kx与y=1/x,可得x(A)=根号下(1/k),y(A)=根号下k;x(C)=-根号下(1/k),y(C)=根号下k。

三角形ABC可以分成两个三角形:OAB和OBC,两个三角形面积都是1/2,很容易看出来。当然我们也可以通过计算获得:

比如,三角形OAB的面积=1/2*OB*AB=1/2*x(A)*y(A)=1/2*根号下(1/k)*根号下k=1/2。

三角形OBC也一样,底边OB长度也等于A的横坐标,高则是C的纵坐标的绝对值,同样可得面积为1/2。

因此,三角形ABC的面积=1/2+1/2=1。

2、设a>b,则a-b=120,

设最大公约数是k,并且a=mk,b=nk,

则(m-n)k=120--式1

另外,ab的最小公倍数[a,b]=mnk,最大公约数(a,b)=k

因此,mnk/k=105,即

mn=105=3*5*7

下面将m、n的不同取值代入式1,看是否成立。

n=1时,m=3*5*7,但3*5*7-1不能整除120,因此式1不成立。

n=7时,m=3*5=15,3*5-7=8能整除120

n=5时,3*7-5=16不能整除120

n=3时,5*7-3=32不能整除120

所以,m=3*5=15,n=7

k=120/(m-n)=120/8=15

a=mk=15*15=225

b=nk=7*15=105

所以,较大的数是225 。 1.那么假设A的坐标是(x1,y1),C的坐标是(x2,y2)

满足式子:y1=kx1;y1=1/x1;y2=kx2;y2=1/x2

我们可以得到:kx1=1/x1 kx1*x1=1 kx2=1/x2 kx2*x2=1

三角形ABC的面积=三角形OAB的面积加上三角形OBC的面积

三角形OAB的面积=底*高/2=A的纵坐标的绝对值*(A的横坐标的绝对值)/2=x1*y1/2=kx1*x1/2=1/2

三角形OBC的面积=底*高/2=C的纵坐标的绝对值*(C的横坐标的绝对值)/2

=x2*y2/2=kx2*x2/2=1/2

所以三角形ABC的面积为1。

2.这里先把问题进行简化 不妨设a>b

我们从题意中可以得到:因为ab=最小公倍数*最大公约数

所以ab可被105整除 先证明a,b均可被3整除

否则的话a,b均不可被3整除,那么其最小公倍数也不可被3整除,与它们的最小公倍数是其最大公约数的105倍可被3整除矛盾,所以a,b均可被3整除 ;同理可以证明a,b均可被5整除。那么此时的问题就简化为

a=15x b=15y 120=a-b=15*(x-y)

a,b的最大公约数=x,y的最大公约数*15

a,b的最小公倍数=x,y的最小公倍数*15

问题变为:已知正整数x,y之差为8,它们的最小公倍数是其最大公约数的105倍,那么x,y中较大的数是

从这里我们容易看出x=7 y=15;从而有原先的a=225,b=105.

初中数学竞赛整数的整除性试题

1.整数的整除性的有关概念、性质

(1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。

若d不能整除a,则记作da,如2|6,46。

(2)性质

1)若b|a,则b|(-a),且对任意的非零整数m有bm|am

2)若a|b,b|a,则|a|=|b|;

3)若b|a,c|b,则c|a

4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c;

5)若b|ac,而b为质数,则b|a,或b|c;

6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)

例1(1987年北京初二数学竞赛题)x,y,z均为整数,若11|(7x+2y-5z),求证:11|(3x-7y+12z)。

证明∵4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z)

而11|11(3x-2y+3z),

且11|(7x+2y-5z),

∴11|4(3x-7y+12z)

又(11,4)=1

∴11|(3x-7y+12z).

2.整除性问题的证明方法

(1)利用数的整除性特征(见第二讲)

(2)利用连续整数之积的性质

①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。

②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。

这个性质可以推广到任意个整数连续之积。

例4一整数a若不能被2和3整除,则a2+23必能被24整除.

证明∵a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.

∵2.∴a为奇数.设a=2k+1(k为整数),

则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).

∵k、k+1为二个连续整数,故k(k+1)必能被2整除,

∴8|4k(k+1),即8|(a2-1).

又∵(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a(a2-1),

∵3a,∴3|(a2-1).3与8互质,∴24|(a2-1),即a2+23能被24整除.

(3)利用整数的奇偶性

下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题.

例7(美国第xx届数学邀请赛题)使n3+100能被n+10整除的正整数n的值是多少?

解n3+100=(n+10)(n2-10n+100)-900.

若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为时,相应地n的值为.因为900的因子是900.所以,n+10=900,n=890.

1.选择题

(1)(1987年上海初中数学竞赛题)若数n=20·30·40·50·60·70·80·90·100·110·120·130,则不是n的因数的最小质数是().

(A)19(B)17(C)13(D)非上述答案

(2)在整数0、1、2…、8、9中质数有x个,偶数有y个,完全平方数有z个,则x+y+z等于().

(A)14(B)13(C)12(D)11(E)10

(3)可除尽311+518的最小整数是().

(A)2(B)3(C)5(D)311+518(E)以上都不是

2.填空题

(1)(1973年加拿大数学竞赛题)把100000表示为两个整数的乘积,使其中没有一个是10的整倍数的表达式为__________.

(2)一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是_________.

(3)(1989年全国初中联赛题)在十进制中,各位数码是0或1,并且能被225整除的最小自然数是________.

初中数学竞赛题100道八年级

国际青少年数学竞赛(IYMC)八年级测试题

一、填空题

1.如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形的周长为32,那么BC、DC的长分别为 .

2. 设A=(x+1)(x+2)(x+3)(x+4)+35,则A的最小值是 .

3.如图,△ABC是边长为6的等边三角形,DE⊥BC于E,EF⊥AC于F,FD⊥AB于D,则AD= .

4.如图,P是等边△ABC内部一点,∠APB,∠BPC, ∠CPA的大小之比是5:6:7,则以PA、PB、PC为边的三角形的三个角的大小之比为 .

5. 已知不等边三角形ABC的两条高的长度分别为4、12,若第三条高也是整数,那么他的长度是 .

6.如图,正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,Rt△CEF的面积为200,那么BE的长为 .

7.如图,△ABC中,∠ABC=45°,AD是∠BAC的平分线,EF垂直平分AD,交BC的延长线于F,则∠CAF的大小是 .

8.如图,在△ABC中,AB=7,AC=11,点M时BC的中点,AD是∠BAC的平分线,MF//AD,则FC的长是 .

9. 如果x+ =3,则 = .

10.在等边△ABC所在平面内求一点P,使得△PAB△PBC△PAC都是等腰三角形,具有这样性质的点P有_________个.

二、解答题

11.如图,△ABC是等边三角形,E在AC上,D在BC上,且AE=CD,AD与BE相较于F,BG⊥AD于G,求证:BF=2FG.

12.如图,已知等腰△ABC中,AB=AC,P、Q分别为AC、AB上的点,且AP=PQ=QB=BC,求∠PCQ的度数.

13.四边形 ABCD中,∠ABC=135°,∠BCD=120°,AB= ,BC=5- ,CD=6,求AD的长.

14.已知正整数b、c、d满足不等式 ,求b、c、d的值.

八年级测试答案(一)

一、填空题

1.10和6

2.34

3.2

4.2:3:4或4:3:2

5.5

6.12

7.45°

8.9

9.

10.10

二、解答题

11.证明△ACD≌△BAE,得∠CAD=∠BAE,∠AFE=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°,在如图△BFG中,∠FBG=30°,所以BF=2FG

13.将四边形ABCD补成长方形MNDG,∠DCG=60°,∠CDG=30°,∠ABM=45°,AM=BM= ,CG= CD=3,DG=3 ,AN=2 ,ND=MG= +5- +3=8,AD=

14. ,

即 ≤0

所以 =0,得b=3,c=6,d=4

初中数学竞赛题100道及答案

【 #初中奥数# 导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。下面是 为大家带来的初中奥数题,欢迎大家阅读。

1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.

2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.

3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.

4.解方程2|x+1|+|x-3|=6.

5.解不等式||x+3|-|x-1||>2.

6.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.

7.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?

8.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).

9.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?

答案:

1.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以

原式=-b+(a+b)-(c-b)-(a-c)=b.

2.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,

|x+m|+|x-n|=x+m-x+n=m+n.

3.分别令x=1,x=-1,代入已知等式中,得

a0+a2+a4+a6=-8128.

4.略

5.略

6.商式为x2-3x+3,余式为2x-4

7.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.

8.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以,p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).

9.设凳子有x只,椅子有y只,由题意得3x+4y+2(x+y)=43,

即5x+6y=43.

所以x=5,y=3是的非负整数解.从而房间里有8个人.

初中数学竞赛题库

【 #初中奥数# 导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。下面是 为大家带来的“精选初中奥数题及答案解析”,欢迎大家阅读。

选择题

1.下面的说法中正确的是()

A.单项式与单项式的和是单项式

B.单项式与单项式的和是多项式

C.多项式与多项式的和是多项式

D.整式与整式的和是整式

答案:D

解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。两个单项式x2,2x2之和为3x2是单项式,排除B。两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。

2.如果a,b都代表有理数,并且a+b=0,那么()

A.a,b都是0

B.a,b之一是0

C.a,b互为相反数

D.a,b互为倒数

答案:C

解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。

3.下面说法中不正确的是()

A.有最小的自然数

B.没有最小的正有理数

C.没有的负整数

D.没有的非负数

答案:C

解析:的负整数是-1,故C错误。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()

A.a,b同号

B.a,b异号

C.a>0

D.b>0

答案:D

5.大于-π并且不是自然数的整数有()

A.2个

B.3个

C.4个

D.无数个

答案:C

解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,

-1,0共4个.选C。

6.有四种说法:

甲.正数的平方不一定大于它本身;

乙.正数的立方不一定大于它本身;

丙.负数的平方不一定大于它本身;

丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是()

A.0个

B.1个

C.2个

D.3个

答案:B

解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是()

A.a大于-a

B.a小于-a

C.a大于-a或a小于-a

D.a不一定大于-a

答案:D

解析:令a=0,马上可以排除A、B、C,应选D。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边()

A.乘以同一个数

B.乘以同一个整式

C.加上同一个代数式

D.都加上1

答案:D

解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B。同理应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.

9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是()

A.一样多

B.多了

C.少了

D.多少都可能

答案:C

解析:设杯中原有水量为a,依题意可得,

第二天杯中水量为a×(1-10%)=0.9a;

第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;

第三天杯中水量与第一天杯中水量之比为0.99∶1,

所以第三天杯中水量比第一天杯中水量少了,选C。

10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将()

A.增多

B.减少

C.不变D.增多、减少都有可能

答案:A

填空题

1.198919902-198919892=______。

答案:198919902-198919892

=(19891990+19891989)×(19891990-19891989)

=(19891990+19891989)×1=39783979。

解析:利用公式a2-b2=(a+b)(a-b)计算。

2.1-2+3-4+5-6+7-8+…+4999-5000=______。

答案:1-2+3-4+5-6+7-8+…+4999-5000

=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)

=-2500。

解析:本题运用了运算当中的结合律。

3.当a=-0.2,b=0.04时,代数式a2-b的值是______。

答案:0

解析:原式==(-0.2)2-0.04=0。把已知条件代入代数式计算即可。

4.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克。

答案:45000(克)

解析:食盐30%的盐水60千克中含盐60×30%(千克),

设蒸发变成含盐为40%的水重x克,

即0.001x千克,此时,60×30%=(0.001x)×40%

解得:x=45000(克)。

遇到这一类问题,我们要找不变量,本题中盐的含量是一个不变量,通过它列出等式进行计算。

解答题

1.甲乙两人每年收入相等,甲每年储蓄全年收入的1/5,乙每月比甲多开支100元,三年后负债600元,求每人每年收入多少?

答案:设每人每年收入X元,甲每年开始4/5X元,依题意有:

3(4/5X+1200)=3X=600

(3-12/5)X=3600-600

解得,x=5000

答:每人每年收入5000元。

2、若S=15+195+1995+19995+···+199···5(44个9),则和数S的末四位数字的和是多少!

答案:S=(20-5)+(200-5)+(2000-5)+···+(200···0-5)(45个0)

=20+200+2000+200···0(45个0)-5*45

=22···20(45个2)-225

=22···21995(42个2)

3.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程。

答案:设上坡路程为x千米,下坡路程为y千米.依题意则:

X+y=12①;x/3+y/6=31/3②

由②有2x+y=20,③

由①有y=12-x,将之代入③得2x+12-x=20。

所以x=8(千米),于是y=4(千米)。

答:上坡路程为8千米,下坡路程为4千米。

4.证明:质数p除以30所得的余数一定不是合数。

证明:设p=30q+r,0≤r

免费下载这份资料?立即下载

初三数学竞赛题要求有详细过程,用初中方法解答谢谢

1、假设A在第一象限。

解方程组y=kx与y=1/x,可得x(A)=根号下(1/k),y(A)=根号下k;x(C)=-根号下(1/k),y(C)=根号下k。

三角形ABC可以分成两个三角形:OAB和OBC,两个三角形面积都是1/2,很容易看出来。当然我们也可以通过计算获得:

比如,三角形OAB的面积=1/2*OB*AB=1/2*x(A)*y(A)=1/2*根号下(1/k)*根号下k=1/2。

三角形OBC也一样,底边OB长度也等于A的横坐标,高则是C的纵坐标的绝对值,同样可得面积为1/2。

因此,三角形ABC的面积=1/2+1/2=1。

2、设a>b,则a-b=120,

设最大公约数是k,并且a=mk,b=nk,

则(m-n)k=120--式1

另外,ab的最小公倍数[a,b]=mnk,最大公约数(a,b)=k

因此,mnk/k=105,即

mn=105=3*5*7

下面将m、n的不同取值代入式1,看是否成立。

n=1时,m=3*5*7,但3*5*7-1不能整除120,因此式1不成立。

n=7时,m=3*5=15,3*5-7=8能整除120

n=5时,3*7-5=16不能整除120

n=3时,5*7-3=32不能整除120

所以,m=3*5=15,n=7

k=120/(m-n)=120/8=15

a=mk=15*15=225

b=nk=7*15=105

所以,较大的数是225 。 1.那么假设A的坐标是(x1,y1),C的坐标是(x2,y2)

满足式子:y1=kx1;y1=1/x1;y2=kx2;y2=1/x2

我们可以得到:kx1=1/x1 kx1*x1=1 kx2=1/x2 kx2*x2=1

三角形ABC的面积=三角形OAB的面积加上三角形OBC的面积

三角形OAB的面积=底*高/2=A的纵坐标的绝对值*(A的横坐标的绝对值)/2=x1*y1/2=kx1*x1/2=1/2

三角形OBC的面积=底*高/2=C的纵坐标的绝对值*(C的横坐标的绝对值)/2

=x2*y2/2=kx2*x2/2=1/2

所以三角形ABC的面积为1。

2.这里先把问题进行简化 不妨设a>b

我们从题意中可以得到:因为ab=最小公倍数*最大公约数

所以ab可被105整除 先证明a,b均可被3整除

否则的话a,b均不可被3整除,那么其最小公倍数也不可被3整除,与它们的最小公倍数是其最大公约数的105倍可被3整除矛盾,所以a,b均可被3整除 ;同理可以证明a,b均可被5整除。那么此时的问题就简化为

a=15x b=15y 120=a-b=15*(x-y)

a,b的最大公约数=x,y的最大公约数*15

a,b的最小公倍数=x,y的最小公倍数*15

问题变为:已知正整数x,y之差为8,它们的最小公倍数是其最大公约数的105倍,那么x,y中较大的数是

从这里我们容易看出x=7 y=15;从而有原先的a=225,b=105.

初中数学竞赛整数的整除性试题

1.整数的整除性的有关概念、性质

(1)整除的定义:对于两个整数a、d(d≠0),若存在一个整数p,使得成立,则称d整除a,或a被d整除,记作d|a。

若d不能整除a,则记作da,如2|6,46。

(2)性质

1)若b|a,则b|(-a),且对任意的非零整数m有bm|am

2)若a|b,b|a,则|a|=|b|;

3)若b|a,c|b,则c|a

4)若b|ac,而(a,b)=1((a,b)=1表示a、b互质,则b|c;

5)若b|ac,而b为质数,则b|a,或b|c;

6)若c|a,c|b,则c|(ma+nb),其中m、n为任意整数(这一性质还可以推广到更多项的和)

例1(1987年北京初二数学竞赛题)x,y,z均为整数,若11|(7x+2y-5z),求证:11|(3x-7y+12z)。

证明∵4(3x-7y+12z)+3(7x+2y-5z)=11(3x-2y+3z)

而11|11(3x-2y+3z),

且11|(7x+2y-5z),

∴11|4(3x-7y+12z)

又(11,4)=1

∴11|(3x-7y+12z).

2.整除性问题的证明方法

(1)利用数的整除性特征(见第二讲)

(2)利用连续整数之积的性质

①任意两个连续整数之积必定是一个奇数与一个偶数之一积,因此一定可被2整除。

②任意三个连续整数之中至少有一个偶数且至少有一个是3的倍数,所以它们之积一定可以被2整除,也可被3整除,所以也可以被2×3=6整除。

这个性质可以推广到任意个整数连续之积。

例4一整数a若不能被2和3整除,则a2+23必能被24整除.

证明∵a2+23=(a2-1)+24,只需证a2-1可以被24整除即可.

∵2.∴a为奇数.设a=2k+1(k为整数),

则a2-1=(2k+1)2-1=4k2+4k=4k(k+1).

∵k、k+1为二个连续整数,故k(k+1)必能被2整除,

∴8|4k(k+1),即8|(a2-1).

又∵(a-1),a,(a+1)为三个连续整数,其积必被3整除,即3|a(a-1)(a+1)=a(a2-1),

∵3a,∴3|(a2-1).3与8互质,∴24|(a2-1),即a2+23能被24整除.

(3)利用整数的奇偶性

下面我们应用第三讲介绍的整数奇偶性的有关知识来解几个整数问题.

例7(美国第xx届数学邀请赛题)使n3+100能被n+10整除的正整数n的值是多少?

解n3+100=(n+10)(n2-10n+100)-900.

若n+100能被n+10整除,则900也能被n+10整除.而且,当n+10的值为时,相应地n的值为.因为900的因子是900.所以,n+10=900,n=890.

1.选择题

(1)(1987年上海初中数学竞赛题)若数n=20·30·40·50·60·70·80·90·100·110·120·130,则不是n的因数的最小质数是().

(A)19(B)17(C)13(D)非上述答案

(2)在整数0、1、2…、8、9中质数有x个,偶数有y个,完全平方数有z个,则x+y+z等于().

(A)14(B)13(C)12(D)11(E)10

(3)可除尽311+518的最小整数是().

(A)2(B)3(C)5(D)311+518(E)以上都不是

2.填空题

(1)(1973年加拿大数学竞赛题)把100000表示为两个整数的乘积,使其中没有一个是10的整倍数的表达式为__________.

(2)一个自然数与3的和是5的倍数,与3的差是6的倍数,这样的自然数中最小的是_________.

(3)(1989年全国初中联赛题)在十进制中,各位数码是0或1,并且能被225整除的最小自然数是________.

初中数学竞赛题100道八年级

国际青少年数学竞赛(IYMC)八年级测试题

一、填空题

1.如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形的周长为32,那么BC、DC的长分别为 .

2. 设A=(x+1)(x+2)(x+3)(x+4)+35,则A的最小值是 .

3.如图,△ABC是边长为6的等边三角形,DE⊥BC于E,EF⊥AC于F,FD⊥AB于D,则AD= .

4.如图,P是等边△ABC内部一点,∠APB,∠BPC, ∠CPA的大小之比是5:6:7,则以PA、PB、PC为边的三角形的三个角的大小之比为 .

5. 已知不等边三角形ABC的两条高的长度分别为4、12,若第三条高也是整数,那么他的长度是 .

6.如图,正方形ABCD的面积为256,点F在AD上,点E在AB的延长线上,Rt△CEF的面积为200,那么BE的长为 .

7.如图,△ABC中,∠ABC=45°,AD是∠BAC的平分线,EF垂直平分AD,交BC的延长线于F,则∠CAF的大小是 .

8.如图,在△ABC中,AB=7,AC=11,点M时BC的中点,AD是∠BAC的平分线,MF//AD,则FC的长是 .

9. 如果x+ =3,则 = .

10.在等边△ABC所在平面内求一点P,使得△PAB△PBC△PAC都是等腰三角形,具有这样性质的点P有_________个.

二、解答题

11.如图,△ABC是等边三角形,E在AC上,D在BC上,且AE=CD,AD与BE相较于F,BG⊥AD于G,求证:BF=2FG.

12.如图,已知等腰△ABC中,AB=AC,P、Q分别为AC、AB上的点,且AP=PQ=QB=BC,求∠PCQ的度数.

13.四边形 ABCD中,∠ABC=135°,∠BCD=120°,AB= ,BC=5- ,CD=6,求AD的长.

14.已知正整数b、c、d满足不等式 ,求b、c、d的值.

八年级测试答案(一)

一、填空题

1.10和6

2.34

3.2

4.2:3:4或4:3:2

5.5

6.12

7.45°

8.9

9.

10.10

二、解答题

11.证明△ACD≌△BAE,得∠CAD=∠BAE,∠AFE=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°,在如图△BFG中,∠FBG=30°,所以BF=2FG

13.将四边形ABCD补成长方形MNDG,∠DCG=60°,∠CDG=30°,∠ABM=45°,AM=BM= ,CG= CD=3,DG=3 ,AN=2 ,ND=MG= +5- +3=8,AD=

14. ,

即 ≤0

所以 =0,得b=3,c=6,d=4

初中数学竞赛题100道及答案

【 #初中奥数# 导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。下面是 为大家带来的初中奥数题,欢迎大家阅读。

1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值.

2.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n,求x的取值范围.

3.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值.

4.解方程2|x+1|+|x-3|=6.

5.解不等式||x+3|-|x-1||>2.

6.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式.

7.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸?

8.如果正整数p和p+2都是大于3的素数,求证:6|(p+1).

9.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人?

答案:

1.因为|a|=-a,所以a≤0,又因为|ab|=ab,所以b≤0,因为|c|=c,所以c≥0.所以a+b≤0,c-b≥0,a-c≤0.所以

原式=-b+(a+b)-(c-b)-(a-c)=b.

2.因为m<0,n>0,所以|m|=-m,|n|=n.所以|m|<|n|可变为m+n>0.当x+m≥0时,|x+m|=x+m;当x-n≤0时,|x-n|=n-x.故当-m≤x≤n时,

|x+m|+|x-n|=x+m-x+n=m+n.

3.分别令x=1,x=-1,代入已知等式中,得

a0+a2+a4+a6=-8128.

4.略

5.略

6.商式为x2-3x+3,余式为2x-4

7.答案是否定的.设横行或竖列上包含k个黑色方格及8-k个白色方格,其中0≤k≤8.当改变方格的颜色时,得到8-k个黑色方格及k个白色方格.因此,操作一次后,黑色方格的数目“增加了”(8-k)-k=8-2k个,即增加了一个偶数.于是无论如何操作,方格纸上黑色方格数目的奇偶性不变.所以,从原有的32个黑色方格(偶数个),经过操作,最后总是偶数个黑色方格,不会得到恰有一个黑色方格的方格纸.

8.大于3的质数p只能具有6k+1,6k+5的形式.若p=6k+1(k≥1),则p+2=3(2k+1)不是质数,所以,p=6k+5(k≥0).于是,p+1=6k+6,所以,6|(p+1).

9.设凳子有x只,椅子有y只,由题意得3x+4y+2(x+y)=43,

即5x+6y=43.

所以x=5,y=3是的非负整数解.从而房间里有8个人.

初中数学竞赛题库

【 #初中奥数# 导语】奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。下面是 为大家带来的“精选初中奥数题及答案解析”,欢迎大家阅读。

选择题

1.下面的说法中正确的是()

A.单项式与单项式的和是单项式

B.单项式与单项式的和是多项式

C.多项式与多项式的和是多项式

D.整式与整式的和是整式

答案:D

解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。两个单项式x2,2x2之和为3x2是单项式,排除B。两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。

2.如果a,b都代表有理数,并且a+b=0,那么()

A.a,b都是0

B.a,b之一是0

C.a,b互为相反数

D.a,b互为倒数

答案:C

解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。

3.下面说法中不正确的是()

A.有最小的自然数

B.没有最小的正有理数

C.没有的负整数

D.没有的非负数

答案:C

解析:的负整数是-1,故C错误。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()

A.a,b同号

B.a,b异号

C.a>0

D.b>0

答案:D

5.大于-π并且不是自然数的整数有()

A.2个

B.3个

C.4个

D.无数个

答案:C

解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,

-1,0共4个.选C。

6.有四种说法:

甲.正数的平方不一定大于它本身;

乙.正数的立方不一定大于它本身;

丙.负数的平方不一定大于它本身;

丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是()

A.0个

B.1个

C.2个

D.3个

答案:B

解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是()

A.a大于-a

B.a小于-a

C.a大于-a或a小于-a

D.a不一定大于-a

答案:D

解析:令a=0,马上可以排除A、B、C,应选D。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边()

A.乘以同一个数

B.乘以同一个整式

C.加上同一个代数式

D.都加上1

答案:D

解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B。同理应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.

9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是()

A.一样多

B.多了

C.少了

D.多少都可能

答案:C

解析:设杯中原有水量为a,依题意可得,

第二天杯中水量为a×(1-10%)=0.9a;

第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;

第三天杯中水量与第一天杯中水量之比为0.99∶1,

所以第三天杯中水量比第一天杯中水量少了,选C。

10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将()

A.增多

B.减少

C.不变D.增多、减少都有可能

答案:A

填空题

1.198919902-198919892=______。

答案:198919902-198919892

=(19891990+19891989)×(19891990-19891989)

=(19891990+19891989)×1=39783979。

解析:利用公式a2-b2=(a+b)(a-b)计算。

2.1-2+3-4+5-6+7-8+…+4999-5000=______。

答案:1-2+3-4+5-6+7-8+…+4999-5000

=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)

=-2500。

解析:本题运用了运算当中的结合律。

3.当a=-0.2,b=0.04时,代数式a2-b的值是______。

答案:0

解析:原式==(-0.2)2-0.04=0。把已知条件代入代数式计算即可。

4.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克。

答案:45000(克)

解析:食盐30%的盐水60千克中含盐60×30%(千克),

设蒸发变成含盐为40%的水重x克,

即0.001x千克,此时,60×30%=(0.001x)×40%

解得:x=45000(克)。

遇到这一类问题,我们要找不变量,本题中盐的含量是一个不变量,通过它列出等式进行计算。

解答题

1.甲乙两人每年收入相等,甲每年储蓄全年收入的1/5,乙每月比甲多开支100元,三年后负债600元,求每人每年收入多少?

答案:设每人每年收入X元,甲每年开始4/5X元,依题意有:

3(4/5X+1200)=3X=600

(3-12/5)X=3600-600

解得,x=5000

答:每人每年收入5000元。

2、若S=15+195+1995+19995+···+199···5(44个9),则和数S的末四位数字的和是多少!

答案:S=(20-5)+(200-5)+(2000-5)+···+(200···0-5)(45个0)

=20+200+2000+200···0(45个0)-5*45

=22···20(45个2)-225

=22···21995(42个2)

3.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程。

答案:设上坡路程为x千米,下坡路程为y千米.依题意则:

X+y=12①;x/3+y/6=31/3②

由②有2x+y=20,③

由①有y=12-x,将之代入③得2x+12-x=20。

所以x=8(千米),于是y=4(千米)。

答:上坡路程为8千米,下坡路程为4千米。

4.证明:质数p除以30所得的余数一定不是合数。

证明:设p=30q+r,0≤r

初中数学竞赛题(初中数学竞赛题100道八年级)