四年级鸡兔同笼数学题5道(鸡兔同笼的数学题解题思路)
四年级鸡兔同笼数学题5道(鸡兔同笼的数学题解题思路)

一些关于“鸡兔同笼”的数学题

1.设全是男同学。

女同学人数为:(3*12-30)/(3-2)=6(人)

男同学人数为:12-6=6(人)

2.3*4+1*2=14(只)

280/14=20(只)

20/(1+3)=5(只/份)

鸡:1*5*4=20(只)

兔:3*5*4=60(只)

3.后排座位数:(4*2000+1100)/(4+2.5)=1400(张)

前排座位数:2000-1400=600(张) 1.设女生X人,男生Y人

X+Y=12

2X+3Y=30

答:女生6人,男生6人

2.设鸡X,兔子Y

3X=Y

2X+4Y=280

答:鸡有20只,兔子有60只

3.1/(1/15+1/25)=9.375天

希望能帮到你喔~

鸡兔同笼应用题100道

五年级鸡兔同笼应用题:

1、问题:小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?

解答:有兔(44—2×16)÷(4—2)=6(只), 有鸡16—6=10(只)。 答:有6只兔,10只鸡。

2、问题:100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人?

解答:假设100人全是大和尚,那么共需馍300个,比实际多300—140=160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100—80=20(人)。 2、四年级和六年级学生共120人给小树浇水.其中六年级学生1人提2桶水,四年级学生2人抬一桶水,他们一次浇水共180桶.四年级和六年级参加浇水的各有多少人?

3.鸡兔同笼,上有头20个,下有脚48只.求鸡兔各多少只.

1、 大小两辆汽车共同运216吨货物,小汽车运了7小时,大汽车运了8小时,已知小汽车5小时运的数量等于大汽车2小时运的数量,则大汽车每小时运多少吨?

2、 笼子里有鸡兔共27只,兔脚比鸡脚多18只,问:有鸡兔各多少只?

3、有182只兔子,把它们分别装在甲乙两种笼子里,甲种笼子每笼装6只,乙种笼子每笼装4只,两种笼子正好用36个,问:两种笼子个多少个?

4、一个大人一餐吃2个面包,两个小孩一餐吃1个面包,现在有大人和小孩共99人,一餐刚好吃了99个面包,大人、小孩各有多少人?

5、四年级共有52位同学参加植树,男生每人种3棵,女生每人种2棵,已知男生比女生多种36棵,求:有多少名男生?

6、有面值分别为2元、5元、10元的邮票共34张,价值共计178元。其中5元与10元的邮票张数相等,问:各种面值的邮票各有多少张?

7、公园门票出售5元、8元、10元共100张,收入748元,其中5元和8元的张数相等。各种票售出多少张?

8、犀牛、鹿、鸵鸟三种动物共有26个头,80只脚,20只角。犀牛有4只脚,1只角;鹿有4只脚,2只角,鸵鸟有2只脚。三种动物分别有多少只?

1、鸡兔同笼,共100个头,320只脚,鸡有( )只、兔( )只。

2、小明计算20道竞赛题,做对一道得5分,做错一道倒扣3分。结果小明考得60分,小明做对了( )道题。

3、松鼠妈妈采松子。晴天每天可以采20个,雨天每天可以采12个。它一连几天采了112个松子,平均每天采14个。这几天中有( )天下雨。

4、王小二承接了建筑公司一项运输1200块玻璃的业务,并签了合同。合同上规定:每块玻璃运费2元;如果运输过程中有损坏,每损坏一块,除了扣除一块的运费外,还要赔偿25元。王小二把这1200块玻璃运送到指定地点后,建筑公司按合同付给他2076元。运输过程中损坏了( )块。

5、100名师生绿化校园,老师每人栽3棵树,学生每2人栽1棵,总共栽树100棵。老师栽树( )棵,学生栽树( )棵。

6、30枚硬币由2分和5分组成,共值9角9分,2分硬币( )枚,5分硬币( )枚。

7、某校,共有20道填空题。评分标准是每做对一题得5分,做错一题倒扣3分,某题没做该题得0分。小英结果得了69分,那小英有( )题没做。

8、蜘蛛有8只脚,蜻蜓有6只脚和2对翅膀,蝉有6只脚和1对翅膀。现在这三种昆虫18只,共有118只脚和20对翅膀。蜘蛛有( )只,蜻蜓有( )只,蝉有( )只。

9、甲、乙两人进行射击比赛,约定每中一发记20分,脱靶一发扣12分,两人各打10发,共得208分,其中甲比乙多64分,甲中了( )发,乙中了( )发。

10、鸡、兔共有脚96只,若将鸡、兔互换,则有脚84只,鸡有( )只,兔有( )只。

鸡兔同笼的数学题解题思路

鸡兔同笼的解法

(一)解法主要就是用方程解、假设法、列表法这三种。

(1)列表法、假设法是在学生还没有学习方程的情况下运用;

(2)用方程解,是在学生学习了方程后的解法。

至于其他方法,如:抬腿法、飞鸡法、绑腿法、松绑法……都是由“假设法”演变而来的。其实方程方法就是假设法的提升。

(二)因为每个题目的已知条件、问题都有一定的差异性(特别是哪些“改头换面”题),所以在解题时一定要灵活运用上面介绍的方法

公式1:

(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数

总只数-鸡的只数=兔的只数

对应的二元方程操作:(s1*4-s2)/2

二年级鸡兔同笼数学题讲解

第十一讲 鸡兔同笼问题

例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?

分析 如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。

解:①鸡有多少只?

(4×6-128)÷(4-2)

=(184-128)÷2

=56÷2

=28(只)

②免有多少只?

46-28=18(只)

答:鸡有28只,免有18只。

我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:

鸡数=(每只兔脚数× 兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)

兔数=鸡兔总数-鸡数

当然,也可以先假设全是鸡。

例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?

分析 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?

假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。

解:(2×100-80)÷(2+4)=20(只)。

100-20=80(只)。

答:鸡与兔分别有80只和20只。

例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?

分析1 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。

结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?

解法1:

一班:[135-5+(7-5)]÷3=132÷3

=44(人)

二班:44+5=49(人)

三班:49-7=42(人)

答:三年级一班、 二班、三班分别有44人、 49人和 42人。

分析2 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?

解法2:(135+ 5+ 7)÷3

=147÷3

=49(人)

49-5=44(人),49-7=42(人)

答:三年级一班、二班、三班分别有44人、49人和42人。

想一想:根据解法1、解法2的思路,还可以怎样假设?怎样求解?

例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?

分析 我们分步来考虑:

①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。

②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。

③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。

解:[6×10-(41+1)÷(6-4)

= 18÷2=9(条)

10-9=1(条)

答:有9条小船,1条大船。

例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?

分析 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).

解:①假设蜘蛛也是6条腿,三种动物共有多少条腿?

6×18=108(条)

②有蜘蛛多少只?

(118-108)÷(8-6)=5(只)

③蜻蜒、蝉共有多少只?

18-5=13(只)

④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)

⑤蜻蜒多少只?

(20-13)÷ 2-1)= 7(只)

答:蜻蜒有7只.

鸡兔同笼

一、基本问题

“鸡兔同笼”是一类有名的中国古算题.最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--“假设法”来求解.因此很有必要学会它的解法和思路.

例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?

解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是

244÷2=122(只).

在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数

122-88=34,

有34只兔子.当然鸡就有54只.

答:有兔子34只,鸡54只.

上面的计算,可以归结为下面算式:

总脚数÷2-总头数=兔子数.

上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.

还说例1.

如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了

88×4-244=108(只).

每只鸡比兔子少(4-2)只脚,所以共有鸡

(88×4-244)÷(4-2)= 54(只).

说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式

鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).

当然,我们也可以设想88只都是“鸡”,那么共有脚2×88=176(只),比244只脚少了

244-176=68(只).

每只鸡比每只兔子少(4-2)只脚,

68÷2=34(只).

说明设想中的“鸡”,有34只是兔子,也可以列出公式

兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).

上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.

假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”.

现在,拿一个具体问题来试试上面的公式.

例2 红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?

解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.

现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有

蓝笔数=(19×16-280)÷(19-11)

=24÷8

=3(支).

红笔数=16-3=13(支).

答:买了13支红铅笔和3支蓝铅笔.

对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是

8×(11+19)=240.

比280少40.

40÷(19-11)=5.

就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3.

30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算.

实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,“兔数”为10,“鸡数”为6,就有脚数

19×10+11×6=256.

比280少24.

24÷(19-11)=3,

就知道设想6只“鸡”,要少3只.

要使设想的数,能给计算带来方便,常常取决于你的心算本领.

下面再举四个稍有难度的例子.

例3 一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?

解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).

现在把甲打字的时间看成“兔”头数,乙打字的时间看成“鸡”头数,总头数是7.“兔”的脚数是5,“鸡”的脚数是3,总脚数是30,就把问题转化成“鸡兔同笼”问题了.

根据前面的公式

“兔”数=(30-3×7)÷(5-3)

=4.5,

“鸡”数=7-4.5

=2.5,

也就是甲打字用了4.5小时,乙打字用了2.5小时.

答:甲打字用了4小时30分.

例4 今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?

解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作“鸡”头数,弟的年龄看作“兔”头数.25是“总头数”.86是“总脚数”.根据公式,兄的年龄是

(25×4-86)÷(4-3)=14(岁).

1998年,兄年龄是

14-4=10(岁).

父年龄是

(25-14)×4-4=40(岁).

因此,当父的年龄是兄的年龄的3倍时,兄的年龄是

(40-10)÷(3-1)=15(岁).

这是2003年.

答:公元2003年时,父年龄是兄年龄的3倍. 鸡兔同笼,一共有m只头,n只脚,分别求鸡和兔子的个数。

典型二元一次方程组的例题。

免费下载这份资料?立即下载

一些关于“鸡兔同笼”的数学题

1.设全是男同学。

女同学人数为:(3*12-30)/(3-2)=6(人)

男同学人数为:12-6=6(人)

2.3*4+1*2=14(只)

280/14=20(只)

20/(1+3)=5(只/份)

鸡:1*5*4=20(只)

兔:3*5*4=60(只)

3.后排座位数:(4*2000+1100)/(4+2.5)=1400(张)

前排座位数:2000-1400=600(张) 1.设女生X人,男生Y人

X+Y=12

2X+3Y=30

答:女生6人,男生6人

2.设鸡X,兔子Y

3X=Y

2X+4Y=280

答:鸡有20只,兔子有60只

3.1/(1/15+1/25)=9.375天

希望能帮到你喔~

鸡兔同笼应用题100道

五年级鸡兔同笼应用题:

1、问题:小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?

解答:有兔(44—2×16)÷(4—2)=6(只), 有鸡16—6=10(只)。 答:有6只兔,10只鸡。

2、问题:100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人?

解答:假设100人全是大和尚,那么共需馍300个,比实际多300—140=160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100—80=20(人)。 2、四年级和六年级学生共120人给小树浇水.其中六年级学生1人提2桶水,四年级学生2人抬一桶水,他们一次浇水共180桶.四年级和六年级参加浇水的各有多少人?

3.鸡兔同笼,上有头20个,下有脚48只.求鸡兔各多少只.

1、 大小两辆汽车共同运216吨货物,小汽车运了7小时,大汽车运了8小时,已知小汽车5小时运的数量等于大汽车2小时运的数量,则大汽车每小时运多少吨?

2、 笼子里有鸡兔共27只,兔脚比鸡脚多18只,问:有鸡兔各多少只?

3、有182只兔子,把它们分别装在甲乙两种笼子里,甲种笼子每笼装6只,乙种笼子每笼装4只,两种笼子正好用36个,问:两种笼子个多少个?

4、一个大人一餐吃2个面包,两个小孩一餐吃1个面包,现在有大人和小孩共99人,一餐刚好吃了99个面包,大人、小孩各有多少人?

5、四年级共有52位同学参加植树,男生每人种3棵,女生每人种2棵,已知男生比女生多种36棵,求:有多少名男生?

6、有面值分别为2元、5元、10元的邮票共34张,价值共计178元。其中5元与10元的邮票张数相等,问:各种面值的邮票各有多少张?

7、公园门票出售5元、8元、10元共100张,收入748元,其中5元和8元的张数相等。各种票售出多少张?

8、犀牛、鹿、鸵鸟三种动物共有26个头,80只脚,20只角。犀牛有4只脚,1只角;鹿有4只脚,2只角,鸵鸟有2只脚。三种动物分别有多少只?

1、鸡兔同笼,共100个头,320只脚,鸡有( )只、兔( )只。

2、小明计算20道竞赛题,做对一道得5分,做错一道倒扣3分。结果小明考得60分,小明做对了( )道题。

3、松鼠妈妈采松子。晴天每天可以采20个,雨天每天可以采12个。它一连几天采了112个松子,平均每天采14个。这几天中有( )天下雨。

4、王小二承接了建筑公司一项运输1200块玻璃的业务,并签了合同。合同上规定:每块玻璃运费2元;如果运输过程中有损坏,每损坏一块,除了扣除一块的运费外,还要赔偿25元。王小二把这1200块玻璃运送到指定地点后,建筑公司按合同付给他2076元。运输过程中损坏了( )块。

5、100名师生绿化校园,老师每人栽3棵树,学生每2人栽1棵,总共栽树100棵。老师栽树( )棵,学生栽树( )棵。

6、30枚硬币由2分和5分组成,共值9角9分,2分硬币( )枚,5分硬币( )枚。

7、某校,共有20道填空题。评分标准是每做对一题得5分,做错一题倒扣3分,某题没做该题得0分。小英结果得了69分,那小英有( )题没做。

8、蜘蛛有8只脚,蜻蜓有6只脚和2对翅膀,蝉有6只脚和1对翅膀。现在这三种昆虫18只,共有118只脚和20对翅膀。蜘蛛有( )只,蜻蜓有( )只,蝉有( )只。

9、甲、乙两人进行射击比赛,约定每中一发记20分,脱靶一发扣12分,两人各打10发,共得208分,其中甲比乙多64分,甲中了( )发,乙中了( )发。

10、鸡、兔共有脚96只,若将鸡、兔互换,则有脚84只,鸡有( )只,兔有( )只。

鸡兔同笼的数学题解题思路

鸡兔同笼的解法

(一)解法主要就是用方程解、假设法、列表法这三种。

(1)列表法、假设法是在学生还没有学习方程的情况下运用;

(2)用方程解,是在学生学习了方程后的解法。

至于其他方法,如:抬腿法、飞鸡法、绑腿法、松绑法……都是由“假设法”演变而来的。其实方程方法就是假设法的提升。

(二)因为每个题目的已知条件、问题都有一定的差异性(特别是哪些“改头换面”题),所以在解题时一定要灵活运用上面介绍的方法

公式1:

(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数

总只数-鸡的只数=兔的只数

对应的二元方程操作:(s1*4-s2)/2

二年级鸡兔同笼数学题讲解

第十一讲 鸡兔同笼问题

例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?

分析 如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。

解:①鸡有多少只?

(4×6-128)÷(4-2)

=(184-128)÷2

=56÷2

=28(只)

②免有多少只?

46-28=18(只)

答:鸡有28只,免有18只。

我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:

鸡数=(每只兔脚数× 兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数)

兔数=鸡兔总数-鸡数

当然,也可以先假设全是鸡。

例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?

分析 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?

假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。

解:(2×100-80)÷(2+4)=20(只)。

100-20=80(只)。

答:鸡与兔分别有80只和20只。

例3 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?

分析1 我们设想,如果条件中三个班人数同样多,那么,要求每班有多少人就很容易了.由此得到启示,是否可以通过假设三个班人数同样多来分析求解。

结合下图可以想,假设二班、三班人数和一班人数相同,以一班为标准,则二班人数要比实际人数少5人.三班人数要比实际人数多7-5=2(人).那么,请你算一算,假设二班、三班人数和一班人数同样多,三个班总人数应该是多少?

解法1:

一班:[135-5+(7-5)]÷3=132÷3

=44(人)

二班:44+5=49(人)

三班:49-7=42(人)

答:三年级一班、 二班、三班分别有44人、 49人和 42人。

分析2 假设一、三班人数和二班人数同样多,那么,一班人数比实际要多5人,而三班要比实际人数多7人.这时的总人数又该是多少?

解法2:(135+ 5+ 7)÷3

=147÷3

=49(人)

49-5=44(人),49-7=42(人)

答:三年级一班、二班、三班分别有44人、49人和42人。

想一想:根据解法1、解法2的思路,还可以怎样假设?怎样求解?

例4 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?

分析 我们分步来考虑:

①假设租的 10条船都是大船,那么船上应该坐 6×10= 60(人)。

②假设后的总人数比实际人数多了 60-(41+1)=18(人),多的原因是把小船坐的4人都假设成坐6人。

③一条小船当成大船多出2人,多出的18人是把18÷2=9(条)小船当成大船。

解:[6×10-(41+1)÷(6-4)

= 18÷2=9(条)

10-9=1(条)

答:有9条小船,1条大船。

例5 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?

分析 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为 6×18=108(条),所差 118-108=10(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118-108)÷(8-6)=5(只)蜘蛛.这样剩下的18-5=13(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数1×13=13(对),比实际数少 20-13=7(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7÷(2-1)=7(只).

解:①假设蜘蛛也是6条腿,三种动物共有多少条腿?

6×18=108(条)

②有蜘蛛多少只?

(118-108)÷(8-6)=5(只)

③蜻蜒、蝉共有多少只?

18-5=13(只)

④假设蜻蜒也是一对翅膀,共有多少对翅膀?1×13=13(对)

⑤蜻蜒多少只?

(20-13)÷ 2-1)= 7(只)

答:蜻蜒有7只.

鸡兔同笼

一、基本问题

“鸡兔同笼”是一类有名的中国古算题.最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--“假设法”来求解.因此很有必要学会它的解法和思路.

例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?

解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是

244÷2=122(只).

在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数

122-88=34,

有34只兔子.当然鸡就有54只.

答:有兔子34只,鸡54只.

上面的计算,可以归结为下面算式:

总脚数÷2-总头数=兔子数.

上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法.

还说例1.

如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了

88×4-244=108(只).

每只鸡比兔子少(4-2)只脚,所以共有鸡

(88×4-244)÷(4-2)= 54(只).

说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式

鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).

当然,我们也可以设想88只都是“鸡”,那么共有脚2×88=176(只),比244只脚少了

244-176=68(只).

每只鸡比每只兔子少(4-2)只脚,

68÷2=34(只).

说明设想中的“鸡”,有34只是兔子,也可以列出公式

兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).

上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.

假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”.

现在,拿一个具体问题来试试上面的公式.

例2 红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?

解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.

现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有

蓝笔数=(19×16-280)÷(19-11)

=24÷8

=3(支).

红笔数=16-3=13(支).

答:买了13支红铅笔和3支蓝铅笔.

对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是

8×(11+19)=240.

比280少40.

40÷(19-11)=5.

就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3.

30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算.

实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,“兔数”为10,“鸡数”为6,就有脚数

19×10+11×6=256.

比280少24.

24÷(19-11)=3,

就知道设想6只“鸡”,要少3只.

要使设想的数,能给计算带来方便,常常取决于你的心算本领.

下面再举四个稍有难度的例子.

例3 一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?

解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).

现在把甲打字的时间看成“兔”头数,乙打字的时间看成“鸡”头数,总头数是7.“兔”的脚数是5,“鸡”的脚数是3,总脚数是30,就把问题转化成“鸡兔同笼”问题了.

根据前面的公式

“兔”数=(30-3×7)÷(5-3)

=4.5,

“鸡”数=7-4.5

=2.5,

也就是甲打字用了4.5小时,乙打字用了2.5小时.

答:甲打字用了4小时30分.

例4 今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?

解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作“鸡”头数,弟的年龄看作“兔”头数.25是“总头数”.86是“总脚数”.根据公式,兄的年龄是

(25×4-86)÷(4-3)=14(岁).

1998年,兄年龄是

14-4=10(岁).

父年龄是

(25-14)×4-4=40(岁).

因此,当父的年龄是兄的年龄的3倍时,兄的年龄是

(40-10)÷(3-1)=15(岁).

这是2003年.

答:公元2003年时,父年龄是兄年龄的3倍. 鸡兔同笼,一共有m只头,n只脚,分别求鸡和兔子的个数。

典型二元一次方程组的例题。

四年级鸡兔同笼数学题5道(鸡兔同笼的数学题解题思路)